直线和圆的位置关系
教学目标:1、使学生理解.2、初步掌握直线和圆的位置关系的数量关系定理及其运用.3、通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力;2.在7.1节我们曾学习了“点和圆”的位置关系:教学重点: 使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系.教学难点:直线和圆的位置关系与圆心到直线的距离和圆的半径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解.教学过程:一、新课引入:我们已经学习过用点到圆心的距离和圆半径的大小关系来判断点和圆的位置关系,现在我们用同样的数学思想方法来研究直线和圆的位置关系,请同学们回忆:1.点和圆有哪几种位置关系?2.怎样判定点和圆的位置关系?我们已经了解了平面上点和圆共有三种位置关系①点在圆外,②点在圆上,③点在圆内.如果我们设⊙o的半径为r,则有下面点与圆位置的数量关系.二、新课讲解:实际上,太阳从地平线上缓缓升起时,太阳与地平线的位置关系;铁轨上飞奔的列车,它的轮子与铁轨之间的位置关系;都给了我们直线和圆的位置关系的印象,那么平面上给定一个圆和一条运动着的直线或给定一条定直线和一个运动着的圆,它们之间虽然有着若干种不同的位置关系,如果从数学角度看,它的若干种位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下.学生动手画,教师巡视,当所有学生都把三种位置关系画出来时,教师可以用计算机或幻灯机给同学们作演示,演示的过程一定要用两种方法.一是给定直线圆在动;另一方面是给定圆,直线在动,这样学生才能从运动的观点去研究问题.最终教师指导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义.1、直线和圆有两个公共点时,叫做直线和圆相交.直线叫做圆的割线.2、直线和圆有唯一公共点时,叫做直线和圆相切.直线叫圆的切线,唯一的公共点叫做切点.3.直线和圆没有公共点时,叫做直线和圆相离.(三)重点、难点的学习与目标完成过程在直线和圆的位置关系中,直线和圆相切是非常重要的位置关系,在今后的学习中有重要意义,务使每位同学都要清楚.除从直线和圆的公共点的个数来判断直线是否与圆相切外,是否还有其它的判定方法呢?可提示学生,从点和圆的位置关系去考察,特别要从点到圆心的距离与圆半径的关系去考察,若该直线l到圆心o的距离为d,⊙o半径为r,指导学生观察已经确定的直线和圆的三种位置关系,很容易得到所需的结果:但是反过来,若先给定了直线到圆心的距离与圆的半径的数量关系,判断直线和圆的位置关系时,学生可能有一定的困难.这时可引导学生点到直线的距离,有助于学生对困难的解决.从而完成符号的左边“ ”.向学生介绍符号“ ”的意义及读法.练习一,已知圆的直径为12cm,如果直线和圆心的距离为(1)5.5cm;(2)6cm;(3)8cm;那么直线和圆有几个公共点?为什么?此题是直接运用性质进行判断.答案:(1)两个公共点,(2)一个公共点,(3)没有公共点.练习二,已知⊙o的半径为4cm,直线l上的点a满足oa=4cm,能否判断直线l和⊙o相切?为什么?相关教案
- 1.组合
- 2.排列
- 3.排列、组合、二项式定理-基本原理
- 4.复数的乘法与除法
- 5.复数的加法与减法
- 6.复数的向量表示
- 7.复数的有关概念
- 8.数的概念的发展
- 9.数学教案-排列教学目标
- 10.数学教案-排列、组合、二项式定理-基本原理