两圆的公切线(三)


两圆的公切线(三)

教学目标:1、使学生理解两圆公切线在解决有关两圆相切的问题中的作用;2.掌握辅助线规律,并能熟练应用.2、通过两圆公切线在证明题中的应用,培养学生的分析问题和解决问题的能力.教学重点: 使学生学会在证明两圆相切问题时,辅助线的引法规律,并能熟练应用于几何题证明中.教学难点:在证明中学生引出辅助线后,新旧知识结合得不好,难以打开证题思路.教学过程:一、新课引入:我们已经学习了圆的切线在几何证明中的重要作用,这节课,我们来学习两圆公切线在证明中的作用.实际上两圆的公切线,对两圆起着一个桥梁的作用,首先,对于每一个圆,公切线都会产生切线的性质.另外公切线和过切点的两圆的弦,会产生弦切角定理运用的前提,从而把两个圆中的圆周角建立相等关系,我们有下面的例子.二、新课讲解:例4  教材p.144如图7-110,⊙o1和⊙o2外切于点a,bc是⊙o1和⊙o2的公切线,b、c为切点.

求证:ab⊥ac.分析:题目中已知⊙o1和⊙2外切于点a.这是一个非常特殊的点,过点a我们引两圆的内公切线,产生了三种可能:①运用弦切角定理.②切线的性质定理.③切线长定理.在一道关于两圆相切的问题中,作出公切线后,还要针对已知条件,选择之,本例中已知两圆的外公切线bc,所以过点a的内公切线与之相交,必然产生切线长定理运用的前提,使问题得证.证明:过点a作⊙o1和⊙o2的内公切线交bc于点o.练习一,p.145中2如图7-111,⊙o1和⊙o2相切于点t,直线ab、cd经过点t,交⊙o1于点a、c,交⊙o2于点b、d,求证:ac∥bd.

分析:欲证ac∥bd,须证∠a=∠b,图(1)中∠a和∠b是内错角,图(2)中∠a和∠b是同位角.而∠a和∠b从图形中的位置看是两个圆中的圆周角,必须存在第三个角,使∠a和∠b都与之相等,从而∠a和∠b相等.证明:过点t作两圆的内公切线te.练习二,p.153中14  已知:⊙o和⊙o′外切于点a,经过点a作直线bc和de,bc交⊙o于点b,交⊙o′于点c,de交⊙o于点d,交⊙o′于e,∠bad=40°,∠abd=70°,求∠aec的度数.

分析:已知⊙o中的圆周角求⊙o′中的圆周角,而两圆外切,作内公切线即可.解:过点a作⊙o和⊙o′的内公切线af.练习三,p.153中15.经过相内切的两圆的切点a作大圆的弦ad、ae,设ad、ae分别和小圆相交于b、c.求证:p.153中ab∶ac=ad∶ae.

分析:证比例线段,一是三角形相似,二是平行线.由题设两圆相切,可作出切线,证平行线所成比例线段.证明:连结bc、de.过点a作两圆的公切线af.三、课堂小结:学习了两圆的公切线,应该掌握以下几个方面;(让学生自己总结,并全班交流).1.由圆的轴对称性,两圆外(或内)公切线的交点(如果存在)在连心线上.2.公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角形.3.常用的辅助线:(1)两圆在各种情况下常考虑添连心线;(2)两圆外切时,常添内公切线;(3)两圆内切时,常添外公切线;(4)计算公切线长时,常平移公切线,使它过其中一个圆的圆心.四、布置作业:1.教材p.154中b组2.