首页数学教案高二数学教案指数函数(精选14篇)

指数函数(精选14篇)


指数函数(精选14篇)

指数函数 篇1

  课题:§2.1及其性质

  一、教学三维目标 1、双基:理解指数函数的概念、掌握指数函数的图象和性质。 2、能力:培养学生自主学习、综合归纳、数形结合的能力。 3、德育:使学生在获得知识的过程中学会学习,学会做人,形成正确的学习观,促进素质全面发展

  二、教学方法: 在新课程理念的指导下,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导: (1)课堂讨论法:学生通过讨论得到主动探索。 (2)探究式学习法:学生通过分析、探索、得出指数函数的定义。 (3)自主性学习法:通过实验画出函数图象、观察图象得其性质。在对比中积极思维,主动的进行探究,学生通过分析、探索、得出指数函数的定义。通过实验画出函数图象、观察图象得其性质,本节课注重在新课程理念的指导下培养学生的主动探究能力。

  三、教学重点、难点: 重点:理解指数函数的定义,掌握指数函数的图象性质难点:指数函数的图象和性质关键:利用学生熟悉的描点法画出指数函数的图象

  四、情感态度与价值观: 1.使学生在获得知识的过程中学会学习,学会做人,形成正确的学习观。 2.在民主、和谐的教学气氛中,让学生成为课堂的主体,达到师生的情感交流。

  五、教学过程:

  教    学    过    程

  探索 过程

  教 师 导 航

  学 生 探 究

  与设计意图

  复习 提问  某中细胞分裂时,由1个,分裂一次成2个,分裂二次成4个,分裂三次成8个,分裂四次成16个,…… 问:①1个这样的细胞分裂5次后得到的细胞个数为32

  ②分裂x次后,得到的细胞个数

  设计意图:激发学生学习学习兴趣,为学生学习指数函数做好铺垫,有意识地培养学生分析问题的能力。

  导  言

  像上述问题中的函数 ,就称之为指数函数,

  本节课我们就来研究一下指数函数及其性质。

  新 课   教 学  

  (1)指数函数的定义

  一般地,函数 叫做指数函数,其中x是自变量,函数的定义域为r

  分析定义

  在对比中积极思维,主动的进行探究,学生通过分析、探索、得出指数函数的定义。

  ①画出 和 的图象

  y

  x

  (0,1)

  y

  x

  (0,1)

  设计意图:借助电脑,演示作图过程及图象的变化的动画过程,体现了“创设情境,激发情感,主动发现,主动发展”的教学特色。

  指 数 函 数 的图象和性质  ②指数函数的性质

  图象

  xy01xy10

  性质

  1、定义域:r2、值域:(0,+∞)3、恒过点:(0,1)即当x=0时,y=1

  4、奇偶性: 非奇非偶

  5、在r上是增函数

  在r上是减函数

  学生分组讨论得出指数函数的性质例题  例1、比较下列各题中两个值的大小: ①   ②   ③  设计意图:应用指数函数的单调性“比较两个数的大小”,熟悉指数函数的性质双基 过关  (4)巩固练习: ① 与    ② 与

  ③  与  

  设计意图:对学生这节所学的知识进行反馈,可以了解学生对所学知识的掌握程度

  课堂 小结①指数函数的定义 ②指数函数的图象和性质 ③比较幂值大小的方法设计意图:使学生归纳总结本节所学知识,目的是强化学生加深理解、便于记忆和应用所学知识。布置 作业教材59页第7题设计意图:掌握和巩固本节的重点内容阅读 作业

  查阅资料,了解有关指数及指数函数

  的发展、应用史,写一篇不少于500字的阅读报告

  参考网址:   

  设计意图

  扩大学生知识面培养学生自学能力

  板书 设计指数函数及其性质

  一、定义                   三、例题

  二、指数函数图象和性质 课 后 回 顾 

指数函数 篇2

  教学目标 

  1.使学生掌握的概念,图象和性质.

  (1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.

  (2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.

  (3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象.

  2. 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

  3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.

  教学建议

  教材分析

  (1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.

  (2) 本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数 在 和 时,函数值变化情况的区分.

  (3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

  教法建议

  (1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 , 等都不是.

  (2)对底数 的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.

  关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

  教学设计示例

  课题   

  教学目标 

  1. 理解的定义,初步掌握的图象,性质及其简单应用.

  2. 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法.

  3. 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣.

  教学重点和难点

  重点是理解的定义,把握图象和性质.

  难点是认识底数对函数值影响的认识.

  教学用具

  投影仪

  教学方法

  启发讨论研究式

  教学过程 

  一.    引入新课

  我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------.

  1.6.(板书)

  这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

  由学生回答: 与 之间的关系式,可以表示为 .

  问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系.

  由学生回答: .

  在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为.

  一.    的概念(板书)

  1.定义:形如 的函数称为.(板书)

  教师在给出定义之后再对定义作几点说明.

  2.几点说明 (板书)

  (1) 关于对 的规定:

  教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在.

  若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的发生,所以规定 且 .

  (2)关于的定义域 (板书)

  教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 .扩充的另一个原因是因为使她它更具代表更有应用价值.

  (3)关于是否是的判断(板书)

  刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是.

  (1) ,  (2) ,   (3)

  (4) ,   (5) .

  学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象.

  最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.

  3.归纳性质

  作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.

  函数

  1.定义域 :

  2.值域:

  3.奇偶性 :既不是奇函数也不是偶函数

  4.截距:在 轴上没有,在 轴上为1.

  对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于 轴上方,且与 轴不相交.)

  在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少.

  此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出光滑曲线.

  二.图象与性质(板书)

  1.图象的画法:性质指导下的列表描点法.

  2.草图:

  当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是 且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例.

  此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单.即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象.

  最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)

  由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:

  以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满.

  填好后,让学生仿照此例再列一个 的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质.

  3.性质.

  (1)无论 为何值, 都有定义域为 ,值域为 ,都过点 .

  (2) 时, 在定义域内为增函数, 时, 为减函数.

  (3) 时, ,      时, .

  总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质.

  三.简单应用    (板书)

  1.利用单调性比大小.  (板书)

  一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.

  例1. 比较下列各组数的大小

  (1) 与 ;  (2) 与 ;   

  (3) 与1 .(板书)

  首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.

  解: 在 上是增函数,且

  < .(板书)

  教师最后再强调过程必须写清三句话:

  (1) 构造函数并指明函数的单调区间及相应的单调性.

  (2) 自变量的大小比较.

  (3) 函数值的大小比较.

  后两个题的过程略.要求学生仿照第(1)题叙述过程.

  例2.比较下列各组数的大小

  (1) 与 ;  (2) 与   ;  

  (3) 与 .(板书)

  先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)

  最后由学生说出 >1, <1, > .

  解决后由教师小结比较大小的方法

  (1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)

  (2) 搭桥比较法: 用特殊的数1或0.

  三.巩固练习

  练习:比较下列各组数的大小(板书)

  (1) 与      (2) 与 ; 

  (3) 与 ; (4) 与 .解答过程略

  四.小结

  1.的概念

  2.的图象和性质

  3.简单应用

  五 .板书设计 

  探究活动

  (1) 对于 的图象和 的图象大家都比较熟悉也能画出它的图象,现在如果将 和 的 图象画在同一坐标系中,你认为它们会有几个交点呢?为什么?

  答案:有两个交点.

  (2) A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?

  答案:15天的合同可以签,而30 天的合同不能签.

指数函数 篇3

  教学目标 

  1.使学生掌握的概念,图象和性质.

  (1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.

  (2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.

  (3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象.

  2. 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

  3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.

  教学建议

  教材分析

  (1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.

  (2) 本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数 在 和 时,函数值变化情况的区分.

  (3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

  教法建议

  (1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 , 等都不是.

  (2)对底数 的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.

  关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

  教学设计示例

  课题   

  教学目标 

  1. 理解的定义,初步掌握的图象,性质及其简单应用.

  2. 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法.

  3. 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣.

  教学重点和难点

  重点是理解的定义,把握图象和性质.

  难点是认识底数对函数值影响的认识.

  教学用具

  投影仪

  教学方法

  启发讨论研究式

  教学过程 

  一.    引入新课

  我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------.

  1.6.(板书)

  这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

  由学生回答: 与 之间的关系式,可以表示为 .

  问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系.

  由学生回答: .

  在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为.

  一.    的概念(板书)

  1.定义:形如 的函数称为.(板书)

  教师在给出定义之后再对定义作几点说明.

  2.几点说明 (板书)

  (1) 关于对 的规定:

  教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在.

  若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的发生,所以规定 且 .

  (2)关于的定义域 (板书)

  教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 .扩充的另一个原因是因为使她它更具代表更有应用价值.

  (3)关于是否是的判断(板书)

  刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是.

  (1) ,  (2) ,   (3)

  (4) ,   (5) .

  学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象.

  最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.

  3.归纳性质

  作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.

  函数

  1.定义域 :

  2.值域:

  3.奇偶性 :既不是奇函数也不是偶函数

  4.截距:在 轴上没有,在 轴上为1.

  对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于 轴上方,且与 轴不相交.)

  在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少.

  此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出光滑曲线.

  二.图象与性质(板书)

  1.图象的画法:性质指导下的列表描点法.

  2.草图:

  当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是 且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例.

  此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单.即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象.

  最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)

  由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:

  以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满.

  填好后,让学生仿照此例再列一个 的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质.

  3.性质.

  (1)无论 为何值, 都有定义域为 ,值域为 ,都过点 .

  (2) 时, 在定义域内为增函数, 时, 为减函数.

  (3) 时, ,      时, .

  总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质.

  三.简单应用    (板书)

  1.利用单调性比大小.  (板书)

  一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.

  例1. 比较下列各组数的大小

  (1) 与 ;  (2) 与 ;   

  (3) 与1 .(板书)

  首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.

  解: 在 上是增函数,且

  < .(板书)

  教师最后再强调过程必须写清三句话:

  (1) 构造函数并指明函数的单调区间及相应的单调性.

  (2) 自变量的大小比较.

  (3) 函数值的大小比较.

  后两个题的过程略.要求学生仿照第(1)题叙述过程.

  例2.比较下列各组数的大小

  (1) 与 ;  (2) 与   ;  

  (3) 与 .(板书)

  先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)

  最后由学生说出 >1, <1, > .

  解决后由教师小结比较大小的方法

  (1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)

  (2) 搭桥比较法: 用特殊的数1或0.

  三.巩固练习

  练习:比较下列各组数的大小(板书)

  (1) 与      (2) 与 ; 

  (3) 与 ; (4) 与 .解答过程略

  四.小结

  1.的概念

  2.的图象和性质

  3.简单应用

  五 .板书设计 

  探究活动

  (1) 对于 的图象和 的图象大家都比较熟悉也能画出它的图象,现在如果将 和 的 图象画在同一坐标系中,你认为它们会有几个交点呢?为什么?

  答案:有两个交点.

  (2) A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?

  答案:15天的合同可以签,而30 天的合同不能签.

指数函数 篇4

  教学目标 

  1.使学生掌握的概念,图象和性质.

  (1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.

  (2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.

  (3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象.

  2. 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

  3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.

  教学建议

  教材分析

  (1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.

  (2) 本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数 在 和 时,函数值变化情况的区分.

  (3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

  教法建议

  (1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 , 等都不是.

  (2)对底数 的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.

  关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

  教学设计示例

  课题   

  教学目标 

  1. 理解的定义,初步掌握的图象,性质及其简单应用.

  2. 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法.

  3. 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣.

  教学重点和难点

  重点是理解的定义,把握图象和性质.

  难点是认识底数对函数值影响的认识.

  教学用具

  投影仪

  教学方法

  启发讨论研究式

  教学过程 

  一.    引入新课

  我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------.

  1.6.(板书)

  这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

  由学生回答: 与 之间的关系式,可以表示为 .

  问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系.

  由学生回答: .

  在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为.

  一.    的概念(板书)

  1.定义:形如 的函数称为.(板书)

  教师在给出定义之后再对定义作几点说明.

  2.几点说明 (板书)

  (1) 关于对 的规定:

  教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在.

  若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的发生,所以规定 且 .

  (2)关于的定义域 (板书)

  教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 .扩充的另一个原因是因为使她它更具代表更有应用价值.

  (3)关于是否是的判断(板书)

  刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是.

  (1) ,  (2) ,   (3)

  (4) ,   (5) .

  学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象.

  最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.

  3.归纳性质

  作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.

  函数

  1.定义域 :

  2.值域:

  3.奇偶性 :既不是奇函数也不是偶函数

  4.截距:在 轴上没有,在 轴上为1.

  对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于 轴上方,且与 轴不相交.)

  在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少.

  此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出光滑曲线.

  二.图象与性质(板书)

  1.图象的画法:性质指导下的列表描点法.

  2.草图:

  当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是 且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例.

  此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单.即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象.

  最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)

  由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:

  以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满.

  填好后,让学生仿照此例再列一个 的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质.

  3.性质.

  (1)无论 为何值, 都有定义域为 ,值域为 ,都过点 .

  (2) 时, 在定义域内为增函数, 时, 为减函数.

  (3) 时, ,      时, .

  总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质.

  三.简单应用    (板书)

  1.利用单调性比大小.  (板书)

  一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.

  例1. 比较下列各组数的大小

  (1) 与 ;  (2) 与 ;   

  (3) 与1 .(板书)

  首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.

  解: 在 上是增函数,且

  < .(板书)

  教师最后再强调过程必须写清三句话:

  (1) 构造函数并指明函数的单调区间及相应的单调性.

  (2) 自变量的大小比较.

  (3) 函数值的大小比较.

  后两个题的过程略.要求学生仿照第(1)题叙述过程.

  例2.比较下列各组数的大小

  (1) 与 ;  (2) 与   ;  

  (3) 与 .(板书)

  先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)

  最后由学生说出 >1, <1, > .

  解决后由教师小结比较大小的方法

  (1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)

  (2) 搭桥比较法: 用特殊的数1或0.

  三.巩固练习

  练习:比较下列各组数的大小(板书)

  (1) 与      (2) 与 ; 

  (3) 与 ; (4) 与 .解答过程略

  四.小结

  1.的概念

  2.的图象和性质

  3.简单应用

  五 .板书设计 

  探究活动

  (1) 对于 的图象和 的图象大家都比较熟悉也能画出它的图象,现在如果将 和 的 图象画在同一坐标系中,你认为它们会有几个交点呢?为什么?

  答案:有两个交点.

  (2) A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?

  答案:15天的合同可以签,而30 天的合同不能签.

指数函数 篇5

  

  课题:指数函数与对数函数的性质及其应用

  课型:综合课

  教学目标 :在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

  重点:指数函数与对数函数的特性。

  难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

  教学方法:多媒体授课。

  学法指导:借助列表与图像法。

  教具:多媒体教学设备。

  教学过程 

  一、   复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

  二、   展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

  指数函数与对数函数关系一览表

  函数

  性质

  指数函数

  y=ax (a>0且a≠1)

  对数函数

  y=logax(a>0且a≠1)

  定义域

  实数集R

  正实数集(0,﹢∞)

  值域

  正实数集(0,﹢∞)

  实数集R

  共同的点

  (0,1)

  (1,0)

  单调性

  a>1 增函数

  a>1 增函数

  0<a<1 减函数

  0<a<1 减函数

  函数特性

  a>1

  当x>0,y>1

  当x>1,y>0

  当x<0,0<y<1

  当0<x<1, y<0

  0<a<1

  当x>0, 0<y<1

  当x>1, y<0

  当x<0,y>1

  当0<x<1, y>0

  反函数

  y=logax(a>0且a≠1)

  y=ax (a>0且a≠1)

  图像

  Y

  y=(1/2)x      y=2x

  (0,1)

  X

  Y

  y=log2x

  (1,0)

  X

  y=log1/2x

  三、   同一坐标系中将指数函数与对数函数进行合成, 观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

  Y

  y=(1/2)x                           y=2x           y=x

  (0,1)              y=log2x

  (1,0)            X

  y=log1/2x

  注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

  四、   利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

  五、   例题

  例⒈比较(Л)(-0.1)与(Л)(-0.5)的大小。

  解:∵ y=ax中, a=Л>1

  ∴ 此函数为增函数

  又∵ ﹣0.1>﹣0.5

  ∴ (Л)(-0.1)>(Л)(-0.5)

  例⒉比较log67与log76的大小。

  解: ∵ log67>log66=1

  log76<log77=1

  ∴  log67>log76

  注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

  例⒊ 求y=3√4-x2的定义域和值域。

  解:∵√4-x2  有意义,须使4-x2≥0

  即x2≤4,      |x|≤2

  ∴-2≤x≤2,即定义域为[-2,2]

  又∵0≤x2≤4,   ∴0≤4-x2≤4

  ∴0≤√4-x2  ≤2,且y=3x是增函数

  ∴30≤y≤32,即值域为[1,9]

  例⒋ 求函数y=√log0.25(log0.25x)的定义域。

  解:要函数有意义,须使log0.25(log0.25x)≥0

  又∵ 0<0.25<1,∴y=log0.25x是减函数

  ∴ 0<log0.25x≤1

  ∴ log0.251<log0.25x≤log0.250.25

  ∴ 0.25≤x<1,即定义域为[0.25,1)

  六、   课堂练习

  求下列函数的定义域

  1.      y=8[1/(2x-1)]

  2.      y=loga(1-x)2 (a>0,且a≠1)

  七、   评讲练习

  八、   布置作业 

  第113页,第10、11题。并预习指数函数与对数函数

  在物理、社会科学中的实际应用。

指数函数 篇6

  课题:指数函数与对数函数的性质及其应用

  课型:综合课

  教学目标 :在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

  重点:指数函数与对数函数的特性。

  难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

  教学方法:多媒体授课。

  学法指导:借助列表与图像法。

  教具:多媒体教学设备。

  教学过程 

  一、   复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

  二、   展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

  指数函数与对数函数关系一览表

  函数

  性质

  指数函数

  y=ax (a>0且a≠1)

  对数函数

  y=logax(a>0且a≠1)

  定义域

  实数集R

  正实数集(0,﹢∞)

  值域

  正实数集(0,﹢∞)

  实数集R

  共同的点

  (0,1)

  (1,0)

  单调性

  a>1 增函数

  a>1 增函数

  0<a<1 减函数

  0<a<1 减函数

  函数特性

  a>1

  当x>0,y>1

  当x>1,y>0

  当x<0,0<y<1

  当0<x<1, y<0

  0<a<1

  当x>0, 0<y<1

  当x>1, y<0

  当x<0,y>1

  当0<x<1, y>0

  反函数

  y=logax(a>0且a≠1)

  y=ax (a>0且a≠1)

  图像

  Y

  y=(1/2)x      y=2x

  (0,1)

  X

  Y

  y=log2x

  (1,0)

  X

  y=log1/2x

  三、   同一坐标系中将指数函数与对数函数进行合成, 观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

  Y

  y=(1/2)x                           y=2x           y=x

  (0,1)              y=log2x

  (1,0)            X

  y=log1/2x

  注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

  四、   利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

  五、   例题

  例⒈比较(Л)(-0.1)与(Л)(-0.5)的大小。

  解:∵ y=ax中, a=Л>1

  ∴ 此函数为增函数

  又∵ ﹣0.1>﹣0.5

  ∴ (Л)(-0.1)>(Л)(-0.5)

  例⒉比较log67与log76的大小。

  解: ∵ log67>log66=1

  log76<log77=1

  ∴  log67>log76

  注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

  例⒊ 求y=3√4-x2的定义域和值域。

  解:∵√4-x2  有意义,须使4-x2≥0

  即x2≤4,      |x|≤2

  ∴-2≤x≤2,即定义域为[-2,2]

  又∵0≤x2≤4,   ∴0≤4-x2≤4

  ∴0≤√4-x2  ≤2,且y=3x是增函数

  ∴30≤y≤32,即值域为[1,9]

  例⒋ 求函数y=√log0.25(log0.25x)的定义域。

  解:要函数有意义,须使log0.25(log0.25x)≥0

  又∵ 0<0.25<1,∴y=log0.25x是减函数

  ∴ 0<log0.25x≤1

  ∴ log0.251<log0.25x≤log0.250.25

  ∴ 0.25≤x<1,即定义域为[0.25,1)

  六、   课堂练习

  求下列函数的定义域

  1.      y=8[1/(2x-1)]

  2.      y=loga(1-x)2 (a>0,且a≠1)

  七、   评讲练习

  八、   布置作业 

  第113页,第10、11题。并预习指数函数与对数函数

  在物理、社会科学中的实际应用。

指数函数 篇7

  以下是人教版高中数学《指数函数及其性质》说课稿,仅供参考。

  一、指数函数及其性质教学设计说明

  新课标指出: 学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础对教学设计加以说明。

  数学本质:

  探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。通过分类讨论,通过研究两个具体的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。引导学生探究出指数函数的一般性质,从而对指数函数进行较为系统的研究。

  二、教材的地位和作用:

  本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1 .2节的内容,研究指数函数的定义,图像及性质。是在学生已经较系统地学习了函数的概念,将指数扩充到实数范围之后学习的一个重要的基本初等函数。它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数 的基础。因此,在教材中占有极其重要的地位,起着承上启下的作用。

  此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。

  三、教学目标分析:

  根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的基础上掌握指数函数的图象和由图象得出的性质为本节教学重点。本节课的难点是指数函数图像和性质的发现过程。

  为此,特制定以下的教学目标:

  1)知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用、能根据单调性解决基本的比较大小的问题.

  2)能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想,增强学生识图用图的能力 。

  3)情感目标(可持续性目标): 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,用联系的观点看问题。体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法。引导学生发现数学中的对称美、简洁美。善于探索的思维品质。

  教学问题诊断分析:

  学生知识储备:

  通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构。

  学情分析:

  由于我所教学生数学的理解能力、运算能力、思维能力等方面有一部分是较好的,但整体是水平参差不齐。高一这个年龄段的学生思维活跃,求知欲强,能够勇于表现自我,展现自我,愿意合作交流。但在思维习惯上与方法上还有待教师引导。

  可能存在的问题与策略:

  问题1.

  学生能够从具体的问题中抽象出数学的模型但对于指数函数的定义中底数的取值范围和指数函数形式的判断有困难。

  教学策略:

  类比着二次函数,对于底数的范围的取值,引导学生回顾指数幂中当指数为全体实数时,底数怎样取值才能一直有意义,以问题的形式引发学生思考底数能否取负数、正数、0、1?从而得到底数的范围。

  学生对: 1)y=-3x 2)y=31/x 3) y=31+x

  4) y=(-3)x 5) y=3-x=(1/3) x

  几种形式的函数的判断,加强对指数函数形解析式的理解和辨别:

  问题2.

  学生初中阶段就接触过函数,但对于学生而言,指数函数是完全陌生的函数。学生列表时,数值的选取上可能会少取或是数值的选取不能照顾到全体实数,画图时,又容易受以前学过的函数图像的影响,把指数函数的图像画成已经学过的图像的形象。

  教学策略:在列表格时自变量的取值以及如何画出指数函数的图像的问题上,采用启发式教学法,类比学过的函数图形的画法,引导学生画图,画完图后,又利用实物投影仪展示一位同学的图像,由全班同学进行提出意见纠错来补充画图的不足。

  另外为了让学生增强识图、用图的能力可以让学生根据观察到的指数函数的图像,来画出底数不同取值范围内的的草图,以便于探究性质。

  问题3.

  函数定义给出后,底数a如何分类讨论的情况学生难以做到,如果处理不好,这对于指数函数质探究时的分类讨论有很重要的意义。

  教学策略:在定义中对于底数的取值范围的讨论后,得出了底数a>0且a≠1。此时,在数轴上把a的范围表示出来,这样学生很容易从数轴上的区间图看出底数分为两类情况进行讨论。这样为指数函数质探究时的分类讨论埋下了伏笔。

  问题4 .

  通过两两个具体的特殊的指数函数图像,来探究得出指数函数的性质。如何使学生能经历从特殊到一般的过程,这种由特殊到一般再到特殊的思想的领会,如何完成?

  教学策略:教师利用几何画板分别画出了底数大于1的和底数在0到1之间的若干个不同的指数函数的图像,展现不同的底数的变化时图像的不同情况,从而让学生经历由特殊到一般的过程。

  问题5.

  指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,学生可能找不到研究问题的方法和方向.

  教学策略:在这部分的安排上,我更注意学生思维习惯的养成,即应从哪些方面,哪些角度去探索一个具体函数。

  问题6.

  学生得到的性质特点可能是杂乱的,如何梳理突出主要的性质?

  教学策略:在学生识图、用图、合作探究的过程后,利用两个表格的填写,让学生感受由图象特征来得到函数的性质的过程。表格主要呈现五个方面的性质与特点。

  五、教法分析:

  为充分贯彻新课程理念,使教学过程真正成为学生学习过程,让学生体验数学发现和创造的历程,本节课拟采用直观教学法、启发发现法、课堂讨论法等教学方法。以多媒体演示为载体,启发学生观察思考,分析讨论为主,教师适当引导点拨,以动手操作、合作交流,自主探究的方式来让学生始终处在教学活动的中心。

  六、预期效果分析:

  1、教学环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的生成和发展过程,使学生对知识的理解逐步深入。

  2、简单实例的引入,顺利完成了知识的迁移,从得出指数函数的模型,符合学生认知规律的最近发展区。

  3、 而作业中完成指数函数性质的探究报告,弥补课堂时间有限探究和展示的局限性,带领学生进入对指数函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。

  4、在整个教学过程中,由于学生是自觉主动地发现结果,对所学知识应该能够较快接受。因此,我认为可以达到预定的教学目标。

指数函数 篇8

  

  课题:指数函数与对数函数的性质及其应用

  课型:综合课

  教学目标 :在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

  重点:指数函数与对数函数的特性。

  难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

  教学方法:多媒体授课。

  学法指导:借助列表与图像法。

  教具:多媒体教学设备。

  教学过程 

  一、   复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

  二、   展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

  指数函数与对数函数关系一览表

  函数

  性质

  指数函数

  y=ax (a>0且a≠1)

  对数函数

  y=logax(a>0且a≠1)

  定义域

  实数集r

  正实数集(0,﹢∞)

  值域

  正实数集(0,﹢∞)

  实数集r

  共同的点

  (0,1)

  (1,0)

  单调性

  a>1 增函数

  a>1 增函数

  0<a<1 减函数

  0<a<1 减函数

  函数特性

  a>1

  当x>0,y>1

  当x>1,y>0

  当x<0,0<y<1

  当0<x<1, y<0

  0<a<1

  当x>0, 0<y<1

  当x>1, y<0

  当x<0,y>1

  当0<x<1, y>0

  反函数

  y=logax(a>0且a≠1)

  y=ax (a>0且a≠1)

  图像

  y

  y=(1/2)x      y=2x

  (0,1)

  x

  y

  y=log2x

  (1,0)

  x

  y=log1/2x

  三、   同一坐标系中将指数函数与对数函数进行合成, 观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

  y

  y=(1/2)x                           y=2x           y=x

  (0,1)              y=log2x

  (1,0)            x

  y=log1/2x

  注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

  四、   利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

  五、   例题

  例⒈比较(л)(-0.1)与(л)(-0.5)的大小。

  解:∵ y=ax中, a=л>1

  ∴ 此函数为增函数

  又∵ ﹣0.1>﹣0.5

  ∴ (л)(-0.1)>(л)(-0.5)

  例⒉比较log67与log76的大小。

  解: ∵ log67>log66=1

  log76<log77=1

  ∴  log67>log76

  注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

  例⒊ 求y=3√4-x2的定义域和值域。

  解:∵√4-x2  有意义,须使4-x2≥0

  即x2≤4,      |x|≤2

  ∴-2≤x≤2,即定义域为[-2,2]

  又∵0≤x2≤4,   ∴0≤4-x2≤4

  ∴0≤√4-x2  ≤2,且y=3x是增函数

  ∴30≤y≤32,即值域为[1,9]

  例⒋ 求函数y=√log0.25(log0.25x)的定义域。

  解:要函数有意义,须使log0.25(log0.25x)≥0

  又∵ 0<0.25<1,∴y=log0.25x是减函数

  ∴ 0<log0.25x≤1

  ∴ log0.251<log0.25x≤log0.250.25

  ∴ 0.25≤x<1,即定义域为[0.25,1)

  六、   课堂练习

  求下列函数的定义域

  1.      y=8[1/(2x-1)]

  2.      y=loga(1-x)2 (a>0,且a≠1)

  七、   评讲练习

  八、   布置作业 

  第113页,第10、11题。并预习指数函数与对数函数

  在物理、社会科学中的实际应用。

指数函数 篇9

  一、教材分析

  1.《指数函数》在教材中的地位、作用和特点

  《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

  此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

  2.教学目标、重点和难点

  通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

  知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

  技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

  素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

  鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

  (1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;

  (2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;

  (3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。

  (4)教学重点:指数函数的图象和性质。

  (5)教学难点:指数函数的图象性质与底数a的关系。

  突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

  二、教法设计

  由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:

  1.创设问题情景.按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

  2.强化“指数函数”概念.引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

  3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。

  4.注意数学与生活和实践的联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。

  三、学法指导

  本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:

  1.再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。

  2.领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。

  3.在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。

  4.注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。

  四、程序设计

  在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。

  1.创设情景、导入新课

  教师活动:①用电脑展示两个实例,第一个是计算机价格下降问题,第二个是生物中细胞分裂的例子,②将学生按奇数列、偶数列分组。

  学生活动:①分别写出计算机价格y与经过月份x的关系式和细胞个数y与分裂次数x的关系式,并互相交流;②回忆指数的概念;③归纳指数函数的概念;④分析出对指数函数底数讨论的必要性以及分类的方法。

  设计意图:通过生活实例激发学生的学习动机,,扫清由概念不清而造成的知识障碍,培养学生思维的主动性, 为突破难点做好准备;

  2.启发诱导、探求新知

  教师活动:①给出两个简单的指数函数并要求学生画它们的图象②在准备好的小黑板上规范地画出这两个指数函数的图象③板书指数函数的性质。

  学生活动:①画出两个简单的指数函数图象②交流、讨论③归纳出研究函数性质涉及的方面④总结出指数函数的性质。

  设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”用多媒体将指数函数的图象推广到一般情况,学生就会很自然的通过观察图象总结出指数函数的性质,同时对于底数的讨论也就变得顺理成章。

  3.巩固新知、反馈回授

  教师活动:①板书例1②板书例2第一问③介绍有关考古的拓展知识。

  学生活动:①学习解题的规范步骤②完成例2的第二问、第三问③完成分组练习④扩展视野,体会数学的应用价值。

  设计意图:本环节的设计目的是实现学生对指数函数知识的初步应用,完成学生学习的“实践―――认识―――再实践”过程,力求通过例题的讲授、规范的板书养成学生良好地解题习惯,起到教师的示范作用,通过例2的第二问、第三问巩固学生对指数函数性质的理解、实现会用指数函数的性质解决数学问题,通过三个分组练习实现教师的再指导和学生的渐进式提高。指数函数与贷款利率的计算、化学中半衰期的计算和考古技术的现代运用有紧密的联系,本环节介绍的“化学中的14c在考古中的应用”既开拓了学生的视野,又为下一步学习“计算分期付款的利率”等问题埋下伏笔。

  4.归纳小结、深化目标

  教师活动:①引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳;②布置课后及拓展作业

  学生活动:完成对指数函数的概念和性质的课内小结并通过课后作业进一步深化学习目标,有能力的同学完成网上调研并在下节课与同学交流我国在利用14c进行考古所取得的成果。

  设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与技能目标,并通过作业实现目标的巩固。

  5.板书设计

  考虑到板书在教学过程中发挥的功能,本节课我设计了由三个板块构成的板书,板面分配比例为2:1:1,第一大板块包含了两部分,一是指数函数的定义,二是课前准备的画有坐标系和表格的小黑板;第二板块书写了例1和例2的第一问;第三板块由学生完成例2的后两问、练习和课堂小结组成。

  五、教学评价

  教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价将贯穿于本节课的每个教学环节中。例如情景导入的表达式评价、回忆指数知识的记忆评价、得出指数函数概念的归纳评价、作图时的准确性评价、解题时的规范性评价、小结时的表述性评价等。在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评,通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。

  当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的能力发展。以上是我对指数函数这节课的设计和思考,敬请批评指正!

指数函数 篇10

  “指数函数”的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。“指数函数”第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

  在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。

  大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

  为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。

指数函数 篇11

  一、引入新课

  师:四边形、五边形、六边形分别有多少条对角线?你是怎样考虑的?

  [提出问题,让学生在解答的过程中发现规律.]

  生:四边形、五边形、六边形分别有两条对角线,五条对角线和九条对角线,以六边形为例,每个顶点可引3条对角线,六个顶点可引18条对角线,但因每条对角线都计算了两次,所以六边形实际有9条对角线.

  师:n边形(n≥4)有多少条对角线?为什么?

  [由特例到一般问题的提出,符合由特殊到一般,由具体到抽象的认识过程.]

  生:n边形有 条对角线,因为每个顶点可引n-3条对角线,所以n个顶点可引n(n-3)条,但每条对角线都计算了两次,故n边形实际有 条对角线.

  师:这一公式适合四边形、五边形、六边形吗?

  [由一般再回到特殊,特例的正确性提高了学生探索问题的积极性,增强了猜想的信心.]

  详细请下载阅读《指数函数的图像和性质》课堂实录.doc

指数函数 篇12

  教学目标 

  1. 理解指数函数的定义,初步掌握指数函数的图象,性质及其简单应用.

  2. 通过指数函数的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法.

  3. 通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣.

  教学重点和难点

  重点是理解指数函数的定义,把握图象和性质.

  难点是认识底数对函数值影响的认识.

  教学用具

  投影仪

  教学方法

  启发讨论研究式

  教学过程 

  一.    引入新课

  我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------指数函数.

  1.6.指数函数(板书)

  这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

  由学生回答: 与 之间的关系式,可以表示为 .

  问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系.

  由学生回答: .

  在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为指数函数.

  一.    指数函数的概念(板书)

  1.定义:形如 的函数称为指数函数.(板书)

  教师在给出定义之后再对定义作几点说明.

  2.几点说明 (板书)

  (1) 关于对 的规定:

  教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在.

  若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的发生,所以规定 且 .

  (2)关于指数函数的定义域 (板书)

  教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为 .扩充的另一个原因是因为使她它更具代表更有应用价值.

  (3)关于是否是指数函数的判断(板书)

  刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数.

  (1) ,  (2) ,   (3)

  (4) ,   (5) .

  学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3) 可以写成 ,也是指数图象.

  最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.

  3.归纳性质

  作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.

  函数

  1.定义域 :

  2.值域:

  3.奇偶性 :既不是奇函数也不是偶函数

  4.截距:在 轴上没有,在 轴上为1.

  对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于 轴上方,且与 轴不相交.)

  在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少.

  此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出光滑曲线.

  二.图象与性质(板书)

  1.图象的画法:性质指导下的列表描点法.

  2.草图:

  当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是 且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例.

  此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单.即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象.

  最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)

  由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:

  以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满.

  填好后,让学生仿照此例再列一个 的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质.

  3.性质.

  (1)无论 为何值,指数函数 都有定义域为 ,值域为 ,都过点 .

  (2) 时, 在定义域内为增函数, 时, 为减函数.

  (3) 时, ,      时, .

  总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质.

  三.简单应用    (板书)

  1.利用指数函数单调性比大小.  (板书)

  一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.

  例1. 比较下列各组数的大小

  (1) 与 ;  (2) 与 ;   

  (3) 与1 .(板书)

  首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.

  解: 在 上是增函数,且

  < .(板书)

  教师最后再强调过程必须写清三句话:

  (1) 构造函数并指明函数的单调区间及相应的单调性.

  (2) 自变量的大小比较.

  (3) 函数值的大小比较.

  后两个题的过程略.要求学生仿照第(1)题叙述过程.

  例2.比较下列各组数的大小

  (1) 与 ;  (2) 与   ;  

  (3) 与 .(板书)

  先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生指数函数的函数值与1有关,可以用1来起桥梁作用)

  最后由学生说出 >1, <1, > .

  解决后由教师小结比较大小的方法

  (1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)

  (2) 搭桥比较法: 用特殊的数1或0.

  三.巩固练习

  练习:比较下列各组数的大小(板书)

  (1) 与      (2) 与 ; 

  (3) 与 ; (4) 与 .解答过程略

  四.小结

  1.指数函数的概念

  2.指数函数的图象和性质

  3.简单应用

  五 .板书设计 

指数函数 篇13

  指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得

  如图所示为a的不同大小影响函数图形的情况。

  可以看到:

  (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

  (2)指数函数的值域为大于0的实数集合。

  (3)函数图形都是下凹的。

  (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

  (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

  (6)函数总是在某一个方向上无限趋向于x轴,永不相交。

  (7)函数总是通过(0,1)这点。

  (8)显然指数函数无界。

  奇偶性

  注图:(1)为奇函数(2)为偶函数

  1.定义

  一般地,对于函数f(x)

  (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

  (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

  (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

  (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

  说明:①奇、偶性是函数的整体性质,对整个定义域而言

  ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

  (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

  ③判断或证明函数是否具有奇偶性的根据是定义

  2.奇偶函数图像的特征:

  定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

  f(x)为奇函数《==》f(x)的图像关于原点对称

  点(x,y)→(-x,-y)

  奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

  偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

  3.奇偶函数运算

  (1).两个偶函数相加所得的和为偶函数.

  (2).两个奇函数相加所得的和为奇函数.

  (3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.

  (4).两个偶函数相乘所得的积为偶函数.

  (5).两个奇函数相乘所得的积为偶函数.

  (6).一个偶函数与一个奇函数相乘所得的积为奇函数.

指数函数 篇14

  范文(一)

  《指数函数》是人教b版高中数学必修1第三章第二节第1课时,是继第二章函数的概念、函数的性质、一次函数、二次函数之后,学生要认识的一个新的函数。下面是我对本节课的教学反思

  (一)对课前准备的反思

  上课前认真备课,多次请教了指导教师孙久志老师的意见与建议,在他的指导下,我对新课标和新教材有了较为整体的把握和认识,将知识系统化,注意知识前后的联系,形成了知识框架,了解了学生的现状和认知结构,做到了因材施教。

  (一)对情境创设的反思

  这是本节课的一个成功之处,整堂课的问题情景创设很恰当,几乎所有的结论都是在教师的引导下,学生自己总结出来的。

  本节课是以问题的形式引入,采用两个实际问题,既激发了学生学习的积极性,又让他们体会到数学是来自于生活,也是服务于生活的。引出函数的一般式 12y=ax ' type="#_x0000_t75"> 以后,我又让学生自己举几个例子,他们举的例子中有a=1,a=0,a<0的情况,我又是以提问的形式让学生自己分析相应的函数定义域与函数值,结果学生自己意识到这些情况不必研究或者不容易研究,自然的得到了参数a>0且a 12鈮? ' type="#_x0000_t75"> 的范围,进而让学生自己求出此时函数的定义域,此时指数函数的定义已经呼之欲出,不言自明了,甚至学生自己已经可以给指数函数下定义了。

  对于指数函数的图像与性质,我仍然是创设问题情景,步步深入,层层逼近,先让学生回忆我们研究一次函数和二次函数的思路,自然会联想到用这个思路来研究指数函数;再回忆画函数图象的方法,自己动手画出函数 12y=2x鐨?/m:t>:sectpr wsp:rsidr="00000000">' type="#_x0000_t75"> 图象,并提问:猜想函数 12y=(12)x' type="#_x0000_t75"> , 12 y=3x' type="#_x0000_t75"> , 12 y=(13)x' type="#_x0000_t75"> 的图象,学生在猜想的过程中就会意识到指数函数的图象形状会因底数a的不同而不同:一方面,a>1与0

  (二)对教学模式的反思

  本节课的另一个成功之处就是采用“引导启发探讨”式教学,在授课的过程中,我一直在和学生进行探讨,让学生自己举例子,自己画图象,自己归纳概括。刚上课的时候,有位同学就对我们举的例子提出了问题,我耐心地进行了解答,正好他的问题也为下一步的讨论提供了思路,我就顺势进行了。其实在平时的课堂中,我就比较注意和学生的交流,尽量地让学生把问题暴漏出来,因为这样的问题一般就是大家共同的问题。在和学生探讨指数函数的特性时,他们观察得非常细致,几乎把图象上能反映出来的函数性质都说出来了,每位发言的同学我都给予了肯定,大家很积极,有位同学还说出了函数增长速度的问题,我就顺势讲了一个与此有关的故事,大家听得津津有味。

  (三)对现代化多媒体应用的反思

  本节课的第三个成功之处是:教学课件用得恰到好处,我采用的是几何画板数学软件,非常形象直观地展示了描点法作图的全过程,因为这个过程是我们归纳图像与性质的一个准备工作,应该向学生展示,但是如果在黑板上演示,既要花费大量的时间,对于较精确的计算也无法进行。几何画板正好解决了这个问题,通过演示,让学生了解到数学需要严谨科学的计算,而且数学其实也是一种很美的科学。但是数学这门学科又要求老师要正确规范地板书,除了练习、例题的题目和作图的过程,其他重要内容我都进行了规范的板书,让学生的思维始终跟着我。在课堂中,我还用投影仪展示了个别学生的作业,进行了点评,让学生发现自己学习中的优点和缺点。

  (四)对于赞赏评价的反思

  对于学生创造性的回答我给予了鼓励与肯定,而对于学生不足甚至错误的回答,指出了不足,但没有损伤其自尊心和自信心。在新课标下,我们的学生应该是自由的、真实的、快乐的、幸福的。我们的数学课堂教学,应该从数学的实际出发给学生自由、真实、快乐、幸福。

  (五)对不足之处的反思

  在让学生归纳指数函数的图象时,学生总结了a>1与01的代表就是我们画出的 12y=2x涓?/m:t>m:rpr>y=3x' type="#_x0000_t75"> 的图像,而0y=(13)x' type="#_x0000_t75"> 的图像,这样就更形象直观一些;由于上课的教室听不见铃声,时间控制得不是很准确,提前了一分钟下课,如果能利用这一分钟再稍深入地探讨一下例2中利用找中间量的方法比较两个幂的大小,这堂课就更加完满,虽然是一个很小的问题,不影响整堂课的效果,但是却提醒我自己在平时的上课中就得注意小的细节问题;板书方面,行与行的疏密控制得不够准确,导致最后一行的空间有点小了。

  范文(二)

  1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。

  2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。