首页数学教案七年级数学教案1.2有理数(精选17篇)

1.2有理数(精选17篇)


1.2有理数(精选17篇)

1.2有理数 篇1

  教学目标1,  掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2,  了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3,  体验分类是数学上的常用处理问题的方法。

  教学难点正确理解分类的标准和按照一定的标准进行分类

  知识重点正确理解有理数的概念

  教学过程(师生活动)

  设计理念

  探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).    问题1:观察黑板上的9个数,并给它们进行分类.    学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如,对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.··…(由于小数可化为分数,以后把小数和分数都称为分数)    通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.    按照书本的说法,得出“整数”“分数”和“有理数”的概念.    看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

  练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.2,教科书第10页练习.    此练习中出现了集合的概念,可向学生作如下的说明.    把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;    数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.    思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?也可以教师说出一些数,让学生进行判断。集合的概念不必深入展开。

  创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。负整数负分数正整数正分数正有理数零负有理数

  有理数

  这个分类可视学生的程度确定是否有必要教学。应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

  小结与作业

  课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

  本课作业1,  必做题:教科书第18页习题1.2第1题2,  教师自行准备

  本课教育评注(课堂设计理念,实际教学效果及改进设想)1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。   2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。   3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

1.2有理数 篇2

  1.2.1 有理数

  教学任务分析

  教

  学

  目

  标知识技能理解有理数的含义,能够把给出的有理数分类、了解0在有理数分类中的作用.数学思考经过本节课的学习,使学生树立分类讨论的观点和能够正确地进行分类的能力.解决问题培养学生独立发现问题、分析问题、解决问题的能力.

  情感态度通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.

  重点会把所给的有理数进行正确的分类

  难点掌握两种有理数的分类方法

  教学流程安排

  活动流程图

  活动内容和目的一、提出问题 二、初步分析解决问题三、知识应用,拓展创新四、作业创设问题情景,复习所学知识,同时引出新的问题――有理数的分类.解决问题,引导学生进行对有理数进行分类,从而体会分类讨论的数学思想.培养学生灵活的思维能力.巩固新知

  教学过程设计一、    创设问题情景复习所学知识,同时引出新的问题――有理数的分类.问题1: 有了负数以后,我们学过的数有哪些?学生活动设计:学生根据所学内容,回忆所学过的数,同时举出相应的例子,一可以让学生复习旧的知识,二可以在所提问题中发现新的知识学生举例:1,2,-1,-3, ,0等 问题2: 在上述列举的数中,我们可以怎样进行分类?学生活动设计:学生根据数的特征进行分类,显然可以把小学学过的数(正数)分成一类――正数,把正数前面加负号(负数)的数分成一类――负数,0既不是正数也不是负数;也可以分成整数和分数,于是有下列分类:正整数,如:1、2、3...   零:0    负整数:-1,-2,-3...正分数:         负分数: 教师活动设计:引导学生理解有理数以及有理数的分类:正整数,零和负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数,这里的分数特指是分母不为1的分数,整数有时可以认为是分母是1的分数.二、    解决问题引导学生进行对有理数进行分类,从而体会分类讨论的数学思想.问题3: 如何对有理数进行分类?学生活动设计:根据以上知识学生进行分类.   或   把一些数放在一起,就组成一个数的集合,简称数集.所有的有理数组成的数集叫做有理数集,所有整数组成的数集叫做整数集.问题4: 你能解决下列问题吗?谈谈你的看法?(1)       0是整数吗?是正数吗?是有理数吗?(2)       -5是整数吗?是负数吗?是有理数吗?(3)       自然数是整数吗?是正数吗?是有理数吗?(4)           下列有理数中,哪些是整数?哪些是分数?哪些是正数?哪些是负数?-7、10.1、89、0、-0.67、 、 〔解答〕(1)0是整数、不是正数但是有理数(2)-5是整数、负数、有理数(3)自然数是整数,不是所有的自然数是正数(比如0),所有的自然数都是有理数(4)整数:-7、89、0  分数:10.1、-0.67、 、   正数:10.1、89、 负数:-7、-0.67、 学生活动设计:学生独立思考上述问题,必要时进行适当的讨论,然后学生进行适当的交流,个别同学在交流中逐步完善自己对问题的看法.三、知识应用,拓展创新我们已经能够对有理数进行合理的分类,共有两种分类方法,下面我们就利用这两种分类方法解决下列问题.问题5:把下列各数填在表示相应集合的大括号中:+6、-8、25,-0.4,0,- ,9.15, 整数集合          ;分数集合           ;   非负数集合      ;正数集合     ;负数集合    .解:整数集合 分数集合 非负数集合 正数集合 负数集合 学生活动设计:(1)把一些数看作一个整体,那么这个整体就叫这些数的集合.其中的每一个数叫做这个集合的一个元素.(2)特别要注意“零”是整数集合、非负数集合、有理数集合中的一个元素;“零”不仅表示“没有”而且具有非常确定的内容,如零时、零度;“零”是正负数的界限;“零”是偶数;“零”能被任何非零数整除;“零”也是一个不可缺少的数码;在数的表示中起着十分重要的作用.(3)非负有理数包括正有理数和零,在数学里,“正”和“整”不能通用,是有区别的;正相对于负来说;整数是相对于分数而言的.问题6:如图,大圆覆盖的区域表示有理数的范围,中圆覆盖的区域表示整数的范围,小圆覆盖的区域表示正整数的范围.小圆和中圆把大圆覆盖的区域分割为无公共部分的a、b、c三个部分,那么(1)a、b、c分别表示什么区域?(2)请将下列各数填入相应的区域内:-7.3、-4、 、0、+2.4、+3、+5、 学生活动设计:学生认真读题,仔细分析问题所涉及的细节,分析出a区域表示的数是有理数但不是整数,从而得到a区域表示的数应该是分数,b区域表示的数是整数但不是正整数,从而得到b区域应该是非正整数(0和负整数),c区域显然是正整数,问题(1)解决.有了以上分析问题(2)容易解决.教师活动设计:引导学生进行自主分析问题,在分析问题的过程抓住细节,启发学生进行解决问题,在学生没有思路时进行适当的提示等.四、小结和作业小结:1.       本节内容:有理数以及分类.2.       重点内容:有理数的两种分类方法、能够对所给的数进行分类.作业:p10 练习   p17 习题1.2   1

1.2有理数 篇3

  一、教学目标:

  (一)知识与技能

  1、 借助生活中的实例,了解从自然数、分数到有理数的扩展过程,体会有理数应用的广泛性。

  2、 理解有理数的概念。

  3、 会用正数、负数、零表示生活中具有相反意义的量。

  4、 理解有理数的分类。

  (二)能力训练要求

  通过大量的现实实例,多彩的数学活动机会,让学生体验数学和现实生活的紧密联系,提高学习的兴趣,培养学习的合作交流能力,促进对知识的理解和掌握。

  二、重点、难点:

  1、重点:有理数的概念。

  2、难点:建立正数、负数的概念对学生来说是数学抽象思维的一次重大飞跃。

  三、教学过程:

  1、 创设情景,引入新知:

  将学生从生活中寻找到的几段含有数据的材料在幻灯片中投影出来:

  (说明:学生自己做的作业,较能引起学生的兴趣。)

  问:材料中含有哪几类数据?

  (1) 本次大赛共有包括港、奥、台在内的近200支代表队,300个节目赛,其中22支代表队,37个节目进入总决赛。我市爱绿艺校代表队的32名小演员是本次参赛选手中年龄最小的,平均年龄仅5岁,但获得的荣誉却是幼儿组最高的金奖。

  答:都是自然数。

  (2) 据了解,我国公路隧道总数已达1782座,总长度704公里,分别是改革开放之初的4.7倍和 倍,是世界上公路隧道最多的国家。我国目前最长的隧道是铁路线上的秦岭隧道,全长18.46公里。正在施工的双向分离式四车道终南山隧道是世界第二、亚洲第一的公路隧道。

  答:有自然数,分数。

  师:我们在小学的时候已经学过自然数和分数,这些数能够满足我们生活的需要吗?还会不会有新的数?

  (3) 珠穆朗玛峰是喜玛拉雅山脉的主峰,海拔8848米,是中国第一高峰,也是地球上第一高峰; 吐鲁番盆地位于新疆维吾尔自治区中部,天山山地东端。盆地底部海拔-155米。是中国海拔最低处。

  2、具有相反意义的量:

  师:这里的两个数据分别表示什么意思?“-155”这个带符号的数我们以前没有见过,它在这里表示什么意思?

  生:地理上学过测量高度时,规定海平面的高度为0米,8848表示比海平面高出8848米,而-155表示比海平面低155米。

  切换到另一个投影材料:

  月球表面白天气温可高达123℃,夜晚可低至-233℃,图中阿波罗11号的宇航员登上月球后不得不穿着既防寒又御热的太空服。

  师:这里123℃,-233℃这两个量分别表示什么意思?

  生:123℃表示零上123℃,-233℃表示零下233℃。

  师:你还在哪些地方见过用带“-”这个号的数?

  生:企业的年收入的盈利与亏损中的亏损数经常用带“-”号的数表示,如盈利500用500记,亏损500用-500记。

  生:股票中上升5元记做5,下跌3元记做-3。

  师:大家观察黑板上我们刚刚举的这些例子,每个例子中出现的一对量,有什么共同特点呢?

  生:这里出现的每一对量,都是表示相反意义的量。

  3、正数和负数

  师:这里零下233℃不用-233℃表示,直接用自然数233℃表示,可以吗?

  生:不可以,因为233℃表示零上233℃而不是零下233℃。

  师:看来我们学过的数不够用了,自然数、分数还不能够满足我们生活所需。在日常生活和生产实践中,我们经常会这种具有相反意义的量,如表示高度有“海拔上”与“海拔下”,温度有“零上”与”零下”,经营情况有“盈利”与“亏损”等等,为了表示具有相反意义的量,我们把一种意义的量规定为正,用过去学过的数(零除外)表示,这样的数叫做正数。把另一种与之相反的量规定为负,用过去学过的数(零除外)前面放上“-”这个符号来表示,“-”这个符号称为负号,如-155,-233等,这样的数就叫做负数。读作“负155,负233”。与负号具有相反意义的符号是“+”号,为了突出符号正数前面可以放上正号(常省略不写)。特别要指出的是:零既不是正数也不是负数。

  【做一做】:p7

  2、填空:

  (1) 规定盈利为正,某公司去年亏损了2.5万元,记做_______万元,今年盈利了3.2万元,记做_________万元;

  (2) 规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔________米,吐鲁番盆地最低点低于海平面155米,记做海拔_______米。

  【课内练习】:p8

  1、填空。

  (1) 汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正,汽车向北行驶75km,记做_______km(或______km)汽车向南行驶100km,记做_____km.

  (2) 如果向银行存入50元记为50元,那么-30.50元表示_________

  (3) 规定增加的百分比为正,增加25%记做________,-12%表示__________.

  师:在现实生活中有具有相反意义的量实在挺多的,大家总结一下有哪些具有相反意义的量可以用正、负数表示呢?(学生讨论、总结)

  一般情况下,正、负规定如下:

  符号 具有相反意义的量

  + 零上 盈利 收入 北 存入 增加 ……

  - 零下 亏损 支出 南 取出 减少 ……

  4、数的分类。

  师:通过今天的学习,我们数的家族出现了新的成员——负数。我们来回顾一下我们学过的数有哪些呢,并进行分类。

  生讨论结果:

  师:还有其他的分类方法吗?

  生:

  【做一做】:p7

  1、(口答)读出下列各数,它们各是正数还是负数?

  7,-7.46,0,

  师生总结:判断正数与负数的关键师看它前面的正、负号:

  有“-”号就是负数,有“+”号或省略了正号的数就是正数。

  例:下面给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?

  解: 是正数; 是负数; 是整数; 是分数, 都是有理数。

  5、 小结

  (1) 用正数与负数表示相反意义的量。

  (2) 正数与负数:像1,+2.5等这样的数叫正数。像-6,-1.4, 等这样的数叫负数。0既不是正数也不是负数。

  (3) 正数与负数在形式上的区别:负数一定带有负号。

  (4) 数的分类

1.2有理数 篇4

  1.2 有理数

  【教学目标】

  1.掌握有理数的概念;

  2.会对有理数按一定的标准进行分类;

  3.体检分类.

  【对话探索设计】

  〖复习〗

  我们知道,所有的分数都可以写成两个整数的比.有限小数5.32可以写成两个整数的比吗?所有的有限小数都是分数吗?  可以写成两个整数的比吗?  是不是分数?

  结论:所有的有限小数和无限循环小数都是分数.

  〖探索1〗

  小学时所指的整数包括正整数和零,学了负整数以后,今后我们所指的整数与小学时所指的整数有什么不同?

  结论:正整数﹑零﹑负整数统称整数.

  〖探索2〗

  下列负数哪些是负分数?

  -12, ,-0.33, ,-12.03,  .

  〖探索3〗

  所有正整数组成正整数集合, 所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:

  1, 0.0708, -700, -π, -3.88, 0,  , 3.14159265,  , .

  正整数集合:{          …}    负整数集合:{        …}

  整数集合:{                      …}

  正分数集合:{          …}    负分数集合:{        …}

  (注意:大括号内的省略号表示什么?)

  〖探索4〗

  为什么不是分数?如果说所有的分数都是小数,对吗?反过来,所有的小数都是分数,对吗?

  结论: (1)小数可以分为无限小数和有限小数两类,而无限小数又可分为(无限)循环小数和无限不循环小数两类;

  (2)分数一定是小数,小数不一定是分数.

  〖探索5〗

  整数和分数统称有理数.

  在数-100, 70.8, -7, π, -3.8, 0,  ,  ,  中,不是分数的是___________________;不是小数的是_____________;不是有理数的是__________.

  (友情提示:π,  都是小数,但都不是分数,自然也都不是有理数.你答对了吗?)

  〖练习〗

  p10.练习

  【作业】

  p18.习题1.

  【补充作业】

  1.列出竖式,把分数 化为小数.(体会分数不可能是无限不循环小数.)

  2.把下列小数化为分数:3.14159,  .

  【备选素材】

  1.判断:

  (1)一个有理数,不是正数,就是负数;

  (2)一个有理数,不是整数,就是分数;

  (3)一个有理数,是分数,就一定是小数;

  (4)一个无限小数,如果不循环,就不是有理数;

  (5)小数就是分数;

  (6)有理数只能分成两类.

  (7)负分数不是负数.

  2.按符号分,整数可以分为正整数、______和______三类,而分数则分为__________和_________,共两类.

  3.分数可以分为有限小数和________________两类.

  4.满足什么条件的小数才是有理数?

  5.(1)列出竖式,把分数 化为小数;(体会分数不可能是无限不循环小数.)

  (2)有的小数不是分数,你能举出一个例子吗?

  (3)说明为什么0.3是分数,而 却不是.

  6.有理数可以分为整数和分数两类,还可以按符号分为正有理数﹑____和___________三类.

  7.把下列各数填在相应的集合里:

  -|-3|, -(-0.072), π, -3.88,  , 3.14,   ,   .

1.2有理数 篇5

  一.  教学目标知识与技能:学习正数、负数、有理数的概念,会用正、负数表示具有相反意义的量,能正确地将有理数进行分类. 过程与方法:通过观察节前图,分析、讨论出用正、负数表示具有相反意义的量的方法,了解有理数的产生的必要性、合理性. 情感与态度:要求学生树立勇于探索、积极实践的学习态度,通过合作交流培养协作精神,撰写小论文进一步了解数的发展历史. 二.  教学重点和难点教学重点:正数、负数的概念对有理数的建立起关键性的作用,是本节课重点. 教学难点:正数、负数的概念的建立是学生从来未经历过的数学的抽象过程,是本节的难点. 三.  教学过程1.       创设情景,引入新课同学们你们还记不记上一节课老师请你们举了一些生活当中的例子,这些例子用自然数,分数,小数是不能解决的,当时我们都举了哪些例子啊? 我记得同学们好象讲到了温度计当中零下的温度,还有地下室,还有欠银行的钱如何表示,还有路标向东向西,扣分如何表示等等等等.那么温度的零上、零下,路程的向东、向西,钱的收入和支出,得分和扣分这些量是不是相互对立的?因此我们称它们为具有相反意义的量,那么如何把这些具有相反意义的量表示出来呢? 2.合作探索,寻求新知师:为了表示具有相反意义的量,我们把一种意义的量规定为正,比如我们会把零上的温度规定为正,路程当中会把向东方向规定为正方向,钱的收入规定为正,把另一种与之意义相反的量规定为负,而这些规定为正的量一般比较容易表示,比如规定向东为正,则向东22千米,记作22千米,而与之相反的量就不好表示,如果也记作22千米,别人一看就分不清是向东还是向西,所以我们必须引进新的数来表示这些相反意义的量.师:把过去学过的数(除零外)规定为正数,如123,15,2/3等,正数前面有时也可以放上“+”(读做正号);在这些数的前面放上“-”(读做负号)就表示负数,如-123,-15,-2/3等.负数是在正数的前面加上“—”得到的,大家现在来举一队正数和负数?那下面老师来举一个例子:0是正数,-1是负数,对吗?那么1是正数,0是负数.正数里有没有包括0,负数会不会包括0,所以零既不是正数,也不是负数.(强调)有了负数,相反意义的量就好表示了,规定向东为正,则向东22千米,记作22千米,向西走50米,就记作-50米.那现在我来问大家:如果上升8米,记作+8,那么下降5米,应该怎么记呢?做一做:第二题这样我们学过的数中,又增加了新的数,我们以前学的整数如1,2,3,4,更准确地说是正整数,那么-1,-2,-3,-4应该称为什么?1/2,3/2,5.4为正分数,则-1/2,-3/2,-5.4为           .(这里老师要提示一下:凡是能化为分数的小数都算做是分数) 3.练习反馈,巩固新知例:下列给出的各数中哪些是正数、负数?哪些是整数、分数?哪些是有理数?-8.4,22,+17/6,0.33,0,-3/5,-9.先让学生做,总结学生出现的一些问题分析:同学们我们在分类的时候,只要根据前面这个分类图来分就会很简单.再提一下正有理数.由教师来演示.本例主要考察学生对于数的不同分类,加强学生的分类意识.课内练习第8页1,24.回顾小结强调负数的由来,及有理数的分类.5.布置作业p8---1,2,3,4,5(选做).四. 教学反思昨天的作业情况很不理想,特别是12班,还有今天上课12、13班的纪律情况还是不行,今天在这个班级上课的教学任务完成的不好,我甚至抓不住教学时间,我得好好反思一下.有些同学喜欢跟老师抬杠,这让我非常苦恼,还有上课随意插话,如李正一,许小斌,周贤达,还有同学上课说话如王翔.17,18班的情况比12,13班好,但也有一些同学上课讲话.       

1.2有理数 篇6

  张化 安徽省合肥市第五十中学 

  一、教材分析:

  《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容.

  “数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算.通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础.

  鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:

  1、知识目标:

  经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算.

  2、能力目标:

  经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想.

  3、情感目标:

  在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习.

  为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用.教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题.

  二、学情分析:

  我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的.

  在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在.因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义.

  此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强.因此在教学过程中要做好调控.

  三、教法选择及学法指导:

  《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学.其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用.

  上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的.本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程.

  四、过程分析:

  教学环节 1、首先与学生互动谈论合肥本地今日的气温,了解合肥今天的最高气温和最低气温。提问:合肥今天的温差是多少度?你是怎样计算的? 2、自然过渡到乌鲁木齐的温差的计算问题,在学生列出算式4–(–3)后引入课题:有理数的减法(板书课题)通过温度的比较让学生明白减法的实际意义在于同类量之间的比较,为后来运用减法解决实际问题打下基础. 从学生身边的实际引入新课,让学生感受到数学就在自己身边,增强学数学的乐趣.同时这也符合七年级学生的认知特征,使学生乐于进一步探索.                 在学生提出可以用  4–(–3)计算乌鲁木齐的温差后,教师鼓励学生充分探索计算4–(–3)的方法,得出结果为7. 在学生得出4–(–3)=7后,教师引导学生比较 4–(–3)=7与4+3=7这两个算式及其结果.  在学生对有理数的减法计算提出初步的猜想“减去一个数等于加上这个数的相反数”后,教师设问:只有4–(–3)=4+3=7这一个例子,你能不能断定这个猜想成立?引导学生通过列举具有不同代表性的特例,如:正数减去正数、正数减去零、正数减去负数、负数减去正数、负数减去零、负数减去负数、零减去正数、零减去零、零减去负数等.最后请学生根据上面的数学活动经验自主总结归纳有理数的减法法则.(教师板书这一法则)学生得出结果的方法可能不一样,教学中只要是合理的都应鼓励.如采取逆运算的方法,或利用温度计直接数读数的方法等.  对4–(–3)=7与4+3=7的观察、比较,是进一步探索有理数减法法则的基础.可借助多媒体课件演示算式的规律,帮助学生探索其中的内在关系.  从提出猜想到得出正确得结论之间有一个探索验证的过程,这个过程正是新课程改革所提倡的“做数学”的过程,教学中要提供足够的时间让学生探索、交流. 学生通过相互补充,不断列举不同代表性的特例,在合作交流中彻底理解有理数相减时总成立的一般法则.而这个“举例”过程,正是一个“数学化”的过程,正是一种对数学素养的培养.  学生的归纳可能不规范,教师可请学生互相交流、补充使之规范,从而培养学生的抽象概括能力及口头表达能力。 1、师生共同完成p53例1,其中第(1)小题教师讲解,其余各题请学生完成.在完成例1后,教学中采用分组竞赛的方法及时处理p54“随堂练习”. 2、师生共同完成p53例2、p54例3教师要通过引导学生分析实际情境,让学生在实际情境中进一步体会减法的意义,并熟练利用减法法则进行减法运算。 教师讲解第(1)小题时要点明算理,规范解答. 互动交流式的练习方式让学生的学习更积极主动.学生在活动中能体会参与数学活动的乐趣. 例2、例3是实际问题,它们的解答有利于培养学生“用数学”的意识.  师生一起分析p55的习题第5题.在弄清题意后,请学生填写方阵图. 解决问题的核心是找到“每个数都加上的同一个数”是什么,这就是有理数的减法在这个实际情境下的应用.另一方面,本题也提供了一个三阶幻方的一般填法,拓展了知识面,并为“试一试”的思考提供参考.多媒体出示总结性问题:1、这一节课我们一起学习了哪些知识?2、对这些内容你有什么体会,请与你的同伴交流.  鼓励学生积极发言,增进师生、生生之间的交流、互动. 1、课堂作业:p54-55习题2.6 第1、2、3、4题2、课外思考:p55习题2.6  试一试利用课堂作业及时反馈本课重、难点.利用课外思考给部分学生提供进一步发展的机会. 

  上一篇:2.2有理数的减法(1)(2)

  下一篇:有理数的减法(练习)

1.2有理数 篇7

  学习目标

  1. 理解有理数的加法法则.

  2. 能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.

  3. 掌握异号两数的加法运算的规律.

  [知识讲解]

  正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为

  4+(-2),

  蓝队的净胜球数为

  1+(-1)。

  这里用到正数和负数的加法。

  下面借助数轴来讨论有理数的加法。

  一、负数+负数

  如果规定向东为正,向西为负,那么一个人向西走2米,再向西走3米,两次共向西走多少米?很明显,两次共向西走了6米.

  这个问题用算式表示就是:(-2)+(-4)=-6.

  这个问题用数轴表示就是如图1所示:

  二、负数+正数

  如果向西走2米,再向东走4米, 那么两次运动后 这个人从起点向东走2米,写成算式就是

  (—2)+4=2。

  这个问题用数轴表示就是如图2所示:

  探究

  利用数轴,求以下情况时这个人两次运动的结果:

  (一)先向东走3米,再向西走5米,物体从起点向运动了米;

  (二)先向东走5米,再向西走5米,物体从起点向运动了米;

  (三)先向西走5米,再向东走5米,物体从起点向运动了米。 这三种情况运动结果的算式如下:

  3+(—5)= —2;

  5+(—5)= 0;

  (—5)+5= 0。

  如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人

  从起点向东(或向西)运动了5米。写成算式就是

  5+0=5或(—5)+0= —5。

  你能从以上7个算式中发现有理数加法的运算法则吗?

  三、有理数加法法则

  1. 同号的两数相加,取相同的符号,并把绝对值相加.

  2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 互为相反数的两个数相加得零.

  3一个数同0相加,仍得这个数。

  四、例题

  例1 计算(-3)+(-9);(2)(-4·7)+3·

  分析:解此题要利用有理数的加法法则. 解:(1) (-3)+(-9)= -(3+9)= -12:

  (2) (-4·7)+3·9=-(4·7-3·9)= -0·8.

  例2足球循环赛中,

  红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算各队的净胜球数。 解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数。 三场比赛中,红队共进4球,失2球,净胜球数为

  (+4)+(—2)=+(4—2)=2;

  黄队共进2球,失4球,净胜球数为

  (+2)+(—4)= —(4—2)= ;蓝队共进球,失球,净胜球数为

  =。

  五、课堂练习1.填空:

  (1)(-3)+(-5)=;(2)3+(-5)=;

  (3)5+(-3)=;(4)7+(-7)=;

  (5)8+(-1)=;(6)(-8)+1 =;

  (7)(-6)+0 =;(8)0+(-2) =;

  2.计算:

  (1)(-13)+(-18);(2)20+(-14);

  (3)1.7 + 2.8 ;(4)2.3 + (-3.1);

  121)+(-);(6)1+(-1.5); 332

  12(7)(-3.04)+ 6 ;(8)+(-). 23(5)(-

  3.想一想,两个数的和一定大于每个加数吗?请你举例说明.

  4. 第23页练习 1、2。

  课堂练习答案

  1.(1)-8; (2)-2; (3)2; (4)0; (5)7; (6)-7;

  (7)-6; (8)-2.

  2.(1)-31; (2)7; (3)4.5; (4)-0.7; (5)-1 ;

  (6)0 ; (7)2.96; (8)-1. 6

  3.不一定,例如两个负数的和小于这两个加数.

  课外作业:第31页1题.

  课外选做题

  1.判断题:

  (1)两个负数的和一定是负数;

  (2)绝对值相等的两个数的和等于零;

  (3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;

  (4)若两个有理数相加时的和为正数,这两个有理数一定都是正数.

  2.当a = -1.6,b = 2.4时,求a+b和a+(-b)的值.

  3.已知│a│= 8,│b│= 2.

  (1)当a、b同号时,求a+b的值;

  (2)当a、b异号时,求a+b的值.

  课外选做题答案

  1.(1)对;(2)错;(3)错;(4)错.

  2.a+b和a+(-b)的值分别为0.8、-4.

  3.(1)当a、b同号时,a+b的值为10或-10;

1.2有理数 篇8

  教学反思需要跳出自我,反思自我。下面是由小编为大家带来的关于有理数的乘方教学反思,希望能够帮到您!

  有理数的乘方教学反思一

  有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以教师在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则,有理数乘方运算顺序。有理数乘方书写格式,有理数乘方常见错误等五个方面来教学。一、要求学生深刻理解有理数乘方的意义。即一般地n个相同的因数相乘即。a。a。a…a= ,记作。在教学上应该抓住以下几点:

  一、乘方是一种运算。相当于“+、-、÷”。教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。强调幂的意义,幂的意义与“和、差、积、商”一样。如的结果是8。所以说的幂是8。与24一样,24=8.所以不能说8是幂,说成23的幂是8。同时强调具有两种意义,它既表示n个a相乘。又表示乘方的运算结果 。

  二、在有理数乘方的教学中主要强调它的运算,所以特别注意有理数乘方符号法则的教学。法则是:正数的任何次幂是正数,0的任何次幂是正,是0,负数的 正数次幂是负数,负数的 偶数次幂是正数,教师教学时强调做乘方时先确定符号再计算,如 =4.

  三、教有理数综合运算时应该强调运算顺序。即先算乘方,再算乘除,最后算加减,有括号的先算括号,同时注意教学生的书写格式。分清与的区别。注意–5的平方与1/2的平方的书写方法。

  四、注意讲清有理数乘方中的常见错误。 如 ,的区别。前者是表示2的平方的相反数,后记者是表示–2的平方,写法不同计算的结果不同。同时分清分数的乘方的书写。与分清小数的乘方的书写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来教乘方。同时讲清楚区别与联系

  有理数的乘方教学反思二

  有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以我们在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则的分类讨论,有理数乘方的易混淆点三个方面来教学。

  一、 要求学生深刻理解有理数乘方的意义。

  即一般地n个相同的因数相乘。在教学中,这一部分主要采用学生自学的方式,我通过学案后的相关问题检测学习的效果。利用学案让学生能自己学会乘方各部分的名称、意义,把学生放在学习的主体地位。我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学.始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上.例如,通过实际计算,让学生自己体会到负数的乘方不全是负数,而需要分不同的情况来讨论。

  二、特别注意有理数乘方的符号法则的分类讨论。

  有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例题中,设计了两组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想.符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显.

  三、讲清有理数乘方中的常见易混淆点。

  如 与-2 ; 与- 在意义、读法、结果上的区别。最主要的是弄清底数的不同。同时会把他们转换乘法,观察各自的特点,与其他几个的区别。要学生明确写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来学乘方。

1.2有理数 篇9

  【教学目标】

  1、通过数学活动使学生共同探索有理数加法、减法法则,从而理解并掌握有理数的加法、减法的法则以及有理数的加减混合运算;

  2、能熟练进行有理数的加减混合运算。

  【教学重点】在有理数的范围内加法交换律、结合律的应用与简化计算。

  【教学难点】应用有理数的加法、减法及运算律解决实际问题。

  【教学过程】

  『问题情境』

  先看一个例子:

  (-8)-(-10)+(-6)-(+4)

  这是一道有理数的加减混合运算题,你会做吗?请同学们思考练习。

  『自主探究』

  全班交流:老师适时引导、指导、边讨论边总结如下:

  (1)上题可以按照运算顺序,从左到右逐一加以计算;

  (2)上题通常也可以用有理数减法法则,把它改写:

  (-8)+(+10)+(-6)+(-4)

  统一为只有加法运算的和式.把加减法统一写成加法的式子,有时也叫做代数和。

  (3)在一个和式里,通常把各个加数的括号和它前面的加号,省略不写.如上式可写成省略加号的和的形式:-8+10-6-4

  (象这样的式子仍看作和式,读作“负8、正10、负6、负4的和”,按运算意义也可读作“负8加10减6减4”,在这里把除第一个数外的数字前面的符号都可看作为运算符号,又可看作性质符号,这样,性质符号与运算符号既有区别,又有联系,有时可以互相转化。)

  『例题讲评』

  例1、计算:

  (1)2+5-8;                        (2) 14-(-12)+(-25)-17

  (3)-3-5+4;                       (4) -26+43-24+13-46

  例2、巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了7km,休息之后,继续向东维护了3km;然后折返向西巡视了11.5 km,此时他在住地的什么方向?与驻地的距离是多少?

  2.4  有理数的加法和减法(4)----随堂练习

  评价_______________

  1.把下列各式写成省略加号的和的形式,并说出它们的两种读法。

  (1)(-12)-(+8)+(-6)-(-5);

  (2)(+3.7)-(-2.1)-1.8+(-2.6)

  2.把6-(-9)+(-15)-(-3)写成省略加号的和的形式,并计算。

  3.计算:

  (1)7-(-4)+(-5)                  (2)-5-(+3)+(-9)-(-7)+

  (3)(-10)-(+12)-(-36)+(-23)      (4)

  (5)(+16)+(-8)-|-3|+|+8|-|-12|-(+5)      (6)-21-12+33+12-67

  (7)5.4-2.3+1.5-4.2               (8)

1.2有理数 篇10

  一、 教材结构与内容简析

  在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。 就第一章而言,有理数的加减法是本章的一个重点。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。

  数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想 (2)培养学生严谨的思维品质。

  二、 教学目标

  根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,制定如下教学目标:

  1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

  2. 通过学习理解加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

  3.通过加法运算练习,培养学生的.运算能力。

  三、教学建议

  (一)重点、难点分析

  本小节的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略符号与括号的代数和的计算.

  由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,就可灵活运用加法运算律,简化计算.

  (二)教法建议

  1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.

  2.关于“去括号法则”,只要学生了解,并不要求追究所以然.

  3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如:-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

  4.先把正数与负数分别相加,可以使运算简便。

  5.在交换加数的位置时,要连同前面的符号一起交换。如:12-5+7 应变成 12+7-5,而不能变成12-7+5。

  备注:教学过程我主要说第一小节---去括号

  (三)教学过程:根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.

  本节课的教学设计环节:

  教学环节 教学活动设计 设计说明

  前提诊测,复习提问1、如何表示一个数的相反数?-(+3),+(-2)各表示的意义是什么?从而引导学生理解“-”号表示一个数的相反数,“+”表示一个数的本身;2、绝对值检测:随机出五六道小题即可 复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”.

  提出问题,创设情景 把以下数相加、相减

  1、+4,-5,+3,-6,-7,3,-2.5

  2、-3.2,-2.6,+5,+6,-4 在黑板上写五六个正负数请同学们把他们加在一起再减在一起。不要怕学生写错,让学生自己体会书写的繁琐计算的困难,继而想出解决办法。(可以多给学生时间。)

  尝试指导,实施目标 从学生的错误出发,引导学生先填括号,在想法去括号,通过小组探究得出去括号法则。,掌握计算方法。(5-10分钟即可)

  题型训练,巩固目标1、两数加减:+3+(-4);(-5)+(-6);(-8)-(+4);(+5)-(-6)

  2、多数加减:(-12)-(+23)+(-7)-(-2);-(-4)+(+5)-(-6);

  +(+6)-(-5)+(-9);0-(-3)+(+6)-(+0.1)+(-0.25);

  -(-7)+(-2.3)-(-5.1)+(-3) 此处要反复练习,并使学生明白去括号后的是省略加号的和式。

  鼓励学生积极发言,增进师生、生生之间的交流、互动.

  形成性测试,检测目标 1、做书18、20、23、24页练习题(只去括号)

  2、利用书上习题1.3复习巩固1、2题的双数题进检测 把“反馈---调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。

  归纳总结,纳入知识系统+,去掉括号后所得结果仍是括号内的数;-,去掉括号后所得结果是括号内数的相反数。 由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题

1.2有理数 篇11

  一、 学情分析:

  在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。

  二、 课前准备

  把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。

  三、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  四、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  五、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?

  学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)

  2、 小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  a. 2 ×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向       运动       米

  2 ×3=       

  b. -2 ×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向       运动       米

  -2 ×3=       

  c. 2 ×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向       运动       米

  2 ×(-3)=       

  d. (-2) ×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向       运动       米

  (-2) ×(-3)=       

  e.被乘数是零或乘数是零,结果是人仍在原处。

  (2)学生归纳法则

  a.符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=( ) 同号得           

  (-)×(+)=( ) 异号得           

  (+)×(-)=( ) 异号得           

  (-)×(-)=( ) 同号得           

  b.积的绝对值等于            。

  c.任何数与零相乘,积仍为            。

  (3)师生共同用文字叙述有理数乘法法则。

  3、 运用法则计算,巩固法则。

  (1)教师按课本p75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为           。

  (3)学生做 p76 练习1(1)(3),教师评析。

  (4)教师引导学生做p75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由           决定,当负因数个数有           ,积为           ; 当负因数个数有           ,积为           ;只要有一个因数为零,积就为           。

  4、 讨论对比,使学生知识系统化。

  有理数乘法

  有理数加法

  同号

  得正

  取相同的符号

  把绝对值相乘

  (-2)×(-3)=6

  把绝对值相加

  (-2)+(-3)=-5

  异号

  得负

  取绝对值大的加数的符号

  把绝对值相乘

  (-2)×3= -6

  (-2)+3=1

  用较大的绝对值减小的绝对值

  任何数与零

  得零

  得任何数

  5、 分层作业,巩固提高。

  六、 教学反思:

  本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意。如果是在法则运用时,编制一些训练符号法则的口算题,把例2放在下一课时处理,效果可能更好。

  【点评】:本节课张老师首先创设了一个密切社会生活的问题情景—抗旱,由此引入新课,并利用学生熟悉的数轴去探究有理数的乘法法则,充分体现了课程源于生活,服务于生活,学生的学习是在原有知识上的自我建构的过程等理念,教学要面向学生的生活世界和社会实践,教学活动必须尊重学生已有的知识与经验,学生原有的知识和经验是学习的基础,学生的学习是在原有知识和经验基础上的自我生成的过程。

  探索有理数乘法法则是本节课的重点,同时它又是一个具有探索性又有挑战性的问题,因此张老师在这一教学环节花了大量的时间,精心设计了问题训练单,将学生按组间同质、组内异质的原则分学习小组开展学习合作学习,使学生经历了法则的探索过程,获得了深层次的情感体验,建构知识,获得了解决问题的方法,培养了学生的探索精神和创新能力。

  为了让学生将获得的新知识纳入到原有的认知结构中去,便于记忆和提取,在教学的最后环节,张老师组织学生对有理数的乘法和有理数的加法进行对比,通过讨论、比较使知识系统化、条理化,从而使自己的认知结构不断地得以优化。学生自己建构知识,是建构主义学习观的基本观点,当新知识获得之后,必须按一定方式加以组织,为新知识找到“家”,并为新知识“安家落户”。

  学生是一个活生生的人,是一个发展中的人,学生间的发展是极不平衡的,为了尊重学生的差异,以学生个体发展为本,张老师在教学中利用学生的个人性格不同,采用异质分组,使不同性格的学生组对交流、互换角色,达到了性格互补的目的。采取分层作业的方式,让不同的人在数学学习中得到了不同的发展,使每个人的认识都得到完善,这正是新课程发展的核心理念──为了每一位学生的发展的具体体现。

  本节课我们也同时看到在新课引入和法则探究两个教学环节中,张老师的设计与教材完全不同,充分体现了教师是用教材,而不是教教材,这也是新课程所倡导的教学理念。教师“教教科书”是传统的“教书匠”的表现,“用教科书教”才是现代教师应有的姿态。我们教师应从学生实际出发,因材施教,创造性地使用教材,大胆对教材内容进行取舍、深加工、再创造,设计出活生生的、丰富多彩的课来,充分有效地将教材的知识激活,形成有教师个性的教材知识。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、去自主学习。

1.2有理数 篇12

  说课不是纯粹的理论交流,它注重的是理论与实践的结合。因此我们要在说课时结合自己的教学实践,把该理论在教学中的作用说清楚。下面是由小编为大家带来的关于有理数的加法说课稿,希望能够帮到您!

  有理数的加法说课稿

  一、说教材:

  (一)地位和作用

  有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。 (二)课程目标:

  1、知识与技能目标:

  ⑴了解有理数加法的意义。 ⑵经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。 (3)运用有理数加法法则正确进行运算(主要是整数的运算)。 2、过程与方法目标:

  ⑴在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。(2)在探索过程中感受数形结合和分类讨论的数学思想。(3)渗透由特殊到一般的唯物辩证法思想 3、情感态度与价值观目标:

  (1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。(2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。(3)培养学生合作意识,体验成功,树立学习自信心。 (三)教学重点、难点:

  重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则

  二、说教法:

  在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。 新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合); 行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括); 省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。 信:在本节课的探究法则与运用法则中体验成功,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误)。同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。

  三、说学法:

  本节课同号两数相加学生易理解,难点是异号两数相加,所以在教学时要注意以下几点:第一、学生在小学阶段的学习和前面正数、负数、数轴、绝对值的学习为本节课提供了学习的前提;第二、七年级的学生已经初步具备合作和交流的能力,通过探究和合作获得成功基本上可以实现课程目标的; 第三、范例讲解和随堂练习始终是学以至用的有效方法。范例讲解与随堂练习都是学生强化理解法则、正确运用法则的地方。范例讲解时应引导学生步步说理,随堂练习时应引导学生通过自我反省、小组评价、来克服解题时的错误,有必要教师给与规范矫正。

  四、说教学程序:

  本节课我将“新、行、省、信”四字教育法运用到教学中,教学过程划分为以下几个环节:(简述如下) 1、 引入新知---新(创设新的问题情境)。

  今年恰好举行了世界杯,所以通过足球净胜球问题引入教学,情境活泼、自然。在学生回答(-1)+(+1)=0和(+1)+(-1)=0时渗透“正负抵消”的思想引入讨论整数加法的几种情形。 2、 探究新知---行

  (1) 类比小学学习加法的“实物数数法”(1用一个 表示,-1用一个 表示,那么2就用两个 表示的方法)和“正负抵消”法形象直观得出一组有理数加法的结果,教学时除(+2)+(+3)教师示范得出外,其他几例均可学生自主得出,教师在聆听学生讲述自己的方法时及时给与积极的评价。(2) 联系前面数轴,运用数轴也可以形象得出上述四组数的结果。在教学时要强调加法的“叠加性”,此处学生易出错。如在讲(-2)+(-3)时学生虽然明白-2表示从原点出发往西移动2个单位,但在加上-3时易犯“又从原点出发”的错误,教学时可以采取以下策略:一是先讲点的移动再移动然后用数学式子表示,在此基础上出示其它几个算式,让学生运用点的移动说明运算结果;二是联系孩提时学数数(数手指)的方法进行类比。在此处的教学师应加强引导,在讲完第一个式子的表示过程后其他三个让学生依照刚才教师的方法和思路独立完成,在学生发表见解时师可以让其他学生给出矫正和评价。 3、 得出新知---省

  在前面形象得出结果的基础上教师诱导学生从四个例子中发现一般的结论。教师引导学生观察: 问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数同0相加,和是多少?在引导学生观察前可以让学生小组合作、交流、讨论。教师可以参与到学生当中的讨论中,在讨论中师可诱导学生先看式子的和的符号与两个加数的符号的关系,再诱导学生看和的绝对值与两个加数的绝对值的关系。如果学生有困难,师可引导学生分类:同号类、异号类、相反数类,观察符号与绝对值特征,再请学生发表自己或小组成员的见解。此处应肯定学生朴素的语言特别应表彰有独特见解和说得完备的学生。最后师生一起用比较规范的语言总结有理数加法法则。 4、 运用新知---信

  此处的“信”主要是指在运用法则解决问题时对照法则“步步说理”,从而树立学生学好法则用好法则的信心。特别是异号两数相加时更要着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在做题时应该注意什么(此处又是“省”),在随堂练习时教师关键是反馈矫正、积极评价, 5、 联系实际、小小拓展;

  为落实“数学来源于生活、生活处处有数学”的理念,此处可安排两道实际应用题:如:请根据式子(-4)+3举出一个恰当的生活情境;(此例有很多好情境,教师应对举例举得好的学生给与积极评价)。又如:土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少? 6、 教学小结、知识回顾:

  教师让学生畅所欲言的谈在这节课的得与失、感到困惑和疑难的地方、运用法则的关键和步骤等等。师在学生发言的基础上再提炼。运算时的基本思路:①确定类型、②确定符号、③确定绝对值。 7、课外作业

  为进一步巩固知识,布置适当作业。教师还可提问供学生课外思考以挑战老师:学习完今天的知识后,老师认为“两个有理数相加,和一定大于其中一个加数”,老师的说法正确吗?请聪明的你举例说明。

1.2有理数 篇13

  1.4.1有理数的乘法(第一课时)

  1.教材分析

  1.1教材的地位与作用

  教材借助归纳验证的数学思想,结合学生已有知识,得出不同情况下两个有理数相乘的结果,进而归纳出两个有理数相乘的乘法法则。然后通过具体例子说明如何具体运用法则进行计算。接下来,从含有几个正数与负数相乘的具体实例出发,归纳出积的符号与各因数的符号的关系。同时,指出了“几个数相乘,有一个因数是0,积为0”的规律。

  1.2教材的重难点分析 1.2.1教学重点

  运用有理数乘法法则正确进行计算。 1.2.2教学难点

  有理数乘法法则的探索过程,符号法则及对法则的理解。 2.教学目标分析 2.1知识与技能

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算,并初步理解有理数乘法法则的合理性;

  2.2过程与方法

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。 2.3 情感态度与价值观

  通过教材给出的气温变化问题,让学生认识到数学来源于实践并反作用于实践。 3.学情分析

  本节课是学生在小学本已学过正数与零的乘法运算,在中学已引进了负有理数以及学过有理数的加减运算之后进行的。因此,在探索有理数乘法法则的过程中,学生会比较容易找出规律,对于几个不为0的有理数相乘,学生也容易抓住其运算的两步骤,即先定符号,再将绝对值相乘。

  附:板书设计

  “有理数乘法法则”的教学设计,一般有两类:一是列举简单事例,尽快给出法则,组织学生用较多的是练习法则、背法则,以求熟练地掌握和运用法则;另一类是让学生体验法则的探索过程,注重培养学生的观察问题、发现问题的`能力,猜测,验证的能力。引入部分以及归纳、有理数相乘的法则

  前一类可能会取得较好的近期效果,但只注重知识技能的培养,忽视了学生数学能力的培养

  有理数乘法两步骤 练习处

  和发展;后者不仅重视了学生思维能力及素质的培养,还能提高学生的学习兴趣。本数学设计采用的是较为适中的方法,没有教材中引入的那么繁琐,但同时兼顾了上述两类设计的优点。

  “有理数乘法法则”的教学,在性质上属于定义教学,看似容易,但实际上却是难教又难学。半课例采用的是让学生观察、实践、合作探讨、发现的探索式学习方法,引导学生独立思考,合作交流,体验数学问题解决的过程,学会如何归纳和总结。

  “有理数乘法法则”的教学中,必须解决的3个难点是:如何自然地引入带有负数的乘法;怎样体现负负得正的合理性与必要性;怎样说明有理数与1和0相乘的结果。

  在整个教学过程中,教师始终注意运用多种形式调动学生的学习积极性和主动性,以自主学习、合作交流的方式,把学习的主动权交给了学生,使学生成为学习的主体,激发学习积极性。通过小组比赛和个人抢答,既培养了合作精神,又增强了竞争意识。

  在数学教学中,不仅要求学生掌握基础知识的应用技能,而且要重视对学生的数学思维

  方法和创造思维能力的培养。学习从数学的角度提出问题、理解问题。体验问题解决的过程,使学生在学习中感受成功的喜悦,建立自信心,从而积极参加与数学学习活动,激发学生强烈的求知欲。

1.2有理数 篇14

  教学目标 

  1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

  2.培养学生观察、分析、归纳及运算能力.

  教学重点和难点

  有理数减法法则.

  课堂教学过程 设计

  一、从学生原有认知结构提出问题

  1.计算:

  (1)(-2.6)+(-3.1);  (2)(-2)+3;  (3)8+(-3);  (4)(-6.9)+0.

  2.化简下列各式符号:

  (1)-(-6);             (2)-(+8);           (3)+(-7);

  (4)+(+4);           (5)-(-9);            (6)-(+3).

  3.填空:

  (1)______+6=20;                (2)20+______=17;

  (3)______+(-2)=-20;           (4)(-20)+______=-6.

  在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是,减法是加法的逆运算.

  二、师生共同研究有理数减法法则

  问题1  (1)(+10)-(+3)=______ ;

  (2)(+10)+(-3)=______.

  教师引导学生发现:两式的结果相同,即

  (+10)-(+3)=(+10)+(-3).

  教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性?

  问题2  (1)(+10)-(-3)=______ ;

  (2)(+10)+(+3)=______.

  对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?

  (2)的结果是多少?

  于是,(+10)-(-3)=(+10)+(+3).

  至此,教师引导学生归纳出有理数减法法则:

  减去一个数,等于加上这个数的相反数.

  教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.

  三、运用举例  变式练习

  例1  计算:

  (1)(-3)-(-5);  (2)0-7.

  例2  计算:

  (1)18-(-3);  (2)(-3)-18;  (3)(-18)-(-3);  (4)(-3)-(-18).

  通过计算上面一组有理数减法算式,引导学生发现:

  在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.

  例3  计算:

  (1)(-3)-[6-(-2)];  (2)15-(6-9).

  例4  15℃比5℃高多少? 15℃比-5℃高多少?

  课堂练习

  1.计算(口答):

  (1)6-9;             (2)(+4)-(-7);         (3)(-5)-(-8);

  (4)(-4)-9;         (5)0-(-5);              (6)0-5.

  2.计算:

  (1) 15-21;                (2)(-17)-(-12);       (3)(-2.5)-5.9;

  四、小结

  1.教师指导学生阅读教材后强调指出:

  由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

  2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

  五、作业 

  1.计算:

  (1)-8-8;           (2)(-8)-(-8);          (3)8-(-8);          (4)8-8;

  (5)0-6;             (6)6-0;                  (7)0-(-6);          (8)(-6)-0.

  2.计算:

  (1)16-47;           (2)28-(-74);        (3)(-37)-(-85);           (4)(-54)-14;

  (5)123-190;        (6)(-112)-98;       (7)(-131)-(-129);       (8)341-249.

  3.计算:

  (1)1.6-(-2.5);     (2)0.4-1;             (3)(-3.8)-7;               (4)(-5.9)-(-6.1);

  (5)(-2.3)-3.6;     (6)4.2-5.7;          (7)(-3.71)-(-1.45);     (8)6.18-(-2.93).

  4.计算:

  5.计算:

  (1)(3-10)-2;           (2)3-(10-2);                        (3)(2-7)-(3-9);

  6.当a=11,b=-5,c=-3时,求下列代数式的值:

  (1)a-c;                   (2) b-c;

  (3)a-b-c;                (4)c-a-b.

  利用有理数减法解下列问题(第7~9题):

  7.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?

  8.分别求出数轴上两点间的距离:

  (1)表示数6的点与表示数2的点;

  (2)表示数5的点与表示数0的点;

  (3)表示数2的点与表示数-5的点;

  (4)表示数-1的点与表示数-6的点.

  9.某地一周内每天的最高气温与最低气温如下表,哪天的温差最大?哪天的温差最小?

  10*.填空:

  (1)如果a-b=c,那么a=______;

  (2)如果a+b=c,那么a=______;

  (3)如果a+(-b)=c,那么a=______;

  (4)如果a-(-b)=c,那么a=______.

  11*.用“>”或“<”号填空:

  (1)如果a>0,b<0,那么a-b______0;

  (2)如果a<0,b>0,那么a-b______0;

  (3)如果a<0,b<0,|a|>|b|,那么a-b______0;

  (4)如果a<0,b<0,那么a-(-b)______0.

  12*.解下列方程:

  (1)x+8=5;                  (2)x-(-7)=-3;

  (3)x-11=-4;                (4)6+x=-10.

  13*.把下面加减法混合运算的式子改成只含加法的式子:

  (1)-30-15+13-(-7);  (2)-7-4+(-9)-(-5).

  课堂教学设计说明

  根据斯托利亚尔的观点,我们把教学作为一个过程,那么在教学一个新的内容时,我们总是把学生视为探索者,将教学过程 模拟成一个“科研过程”,引导学生发现矛盾,提出问题,最后用新的理论来解决原先提出问题,解决原先发现的矛盾.这种教法,归纳起来就是“三部曲”:提出问题——建立理论——解决问题.这节课的设计正是这一教学方法的具体体现.

1.2有理数 篇15

  【教学目标】

  1. 通过学习,能感受到数学知识来源于生活又可应用于实际生活,激发学习的兴趣。

  2.通过探索,能归纳总结出有理数加法法则,理解有理数加法的意义渗透分类思想。

  3.掌握有理数加法法则,并能准确地进行有理数加法运算。

  【学习重点、难点】

  重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;

  难点:异号两数如何相加的法则。

  【学习过程】

  一、 预习自学:

  1.蛋糕店上半年挣5万,下半年挣3万,请问一年共挣多少钱?

  2.蛋糕店上半年赔5万,下半年赔3万,请问一年共挣多少钱?

  3.蛋糕店上半年挣5万,下半年赔3万,请问一年共挣多少钱?

  4.蛋糕店上半年赔5万,下半年挣3万,请问一年共挣多少钱?

  5.蛋糕店上半年挣5万,下半年赔5万,请问一年共挣多少钱?

  6.蛋糕店上半年赔5万,下半年挣0万,请问一年共挣多少钱?

  请你列式计算,并引导学生对前面的七个加法运算进行合理的分类探讨:和的符号怎样确定?和的绝对值怎样确定?(小组讨论展示)

  二、 教师点拨

  知识点一:引导学生对前面的七个加法运算进行合理的分类

  同号两数相加: (+5)+(+3)= ______.(-5)+(-3)= ______

  异号两数相加:(+5)+(-3)= ______;(-5)+(+3)= ______;

  (+5)+(-5)=______

  一数与零相加: (-5)+0=______;

  知识点二:探讨:和的符号怎样确定?和的绝对值怎样确定?

  结论:有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加。

  2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3.一个数同0相加,仍得这个数。

  三.例题精讲;例1(学生自学,教师示范。注意解题步骤)

  四、课堂练习;36页随堂练习与习题(小组展示交流)

  五、当堂检测;

  1.用生活中的事例说明下列算是的意义,并计算出结果:

  (-2)+(-3);(-3)+2

  2.有理数加法法则:

  绝对值不相等的两数相加,取绝对值的加数的符号,并用较大的绝对值较小的绝对值. 互为相反数的两个数相加得.

  3.计算:(+15)+(-7);(-39)+(-21);

  (-37)+22;(-3)+(+3)

1.2有理数 篇16

  今天我说课的内容是人教版七年级数学上册“有理数乘方”第一课时的内容。根据新课程标准提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的过程,从而使学生在对数学理解的同时,在思维能力、情感态度和价值观等方面得到进步和发展”的理念。我在设计中力求“自主探索、动手实践、合作交流”成为学生学习的主要方式。接下来我将对本节课的设计从以下四个方面加以说明。

  一、 教材分析

  1、教材的地位与作用:

  有理数乘方是有理数的一种基本运算。从教材编排的结构上看,共需四个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的.,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。

  2、教学目标:

  根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下:

  ⑴、知识与技能:

  让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。

  ⑵、过程与方法:

  在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。

  ⑶、情感、态度和价值观:

  让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。

  3、教学重点与难点:

  有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。

  二、教法学法

  1、学情分析:

  在知识掌握方面,由于学生刚学完有理数的加、减、乘、除运算,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。所以在本节课的学习中应全面系统的加以讲述。

  在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。所以在本节课的教学中应予以简单明白,深入浅出的分析。

  在学生特征方面:由于七年级学生具有好动、好问、好奇的心理特征。所以在教学中应抓住学生这一特征,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。

  2、教学策略:

  根据本节课的教学目标,教材内容并结合七年级学生的理解能力和思维特征。我将以多媒体为教学平台,采用启发式教学法与师生互动式教学模式。通过精心设计的问题与活动,不断创造思维兴奋点,让学生在学习过程中亲自动手操作,探索结论。教给学生多观察、勤动手、大胆猜、肯钻研的研讨式学习方法,使学生在动脑、动手、动口的过程中获得充足的体验与发展,从而调动起学生的学习主动性与积极性。

  三、教学过程

  1、设置游戏,引入新课:

  首先借助多媒体及课前准备好的硬纸片让全体学生共同做两个折纸游戏。

  游戏一是把面积为1的长方形硬纸片沿中间对折,使两边能够完全重合。引导学生思考:如此折叠五次后所得长方形的面积是多少?得出算式: ;

  游戏二是让学生把长方形纸片对折后再沿折痕剪开,将得到的所有纸片重合放置后再对折、剪开。如此操作五次之后共有多少张硬纸片?得出算式:2×2×2×2×2;

  最后引导学生思考这两个算式的特点,引入新课。

  这个环节通过学生动手操作,使其从直观上理解了乘方运算的特点,并为后续学习起到了导航作用。

  2、合作交流,探索新知:

  先让学生分组讨论下面算式特点:① ,②2×2×2×2×2,③(-3)×(-3)×(-3)×(-3),④(-0.3)×(-0.3)×(-0.3)

  接着让学生思考正方形面积与边长a的关系,正方体体积与棱长a的关系,得出:a·a=a ,a·a·a=a 。然后让学生类比出上面四个算式的记法与读法,最后引导学生猜想:a·a·……·a的结果,总结出幂、底数与指数的概念。

  n个a这个环节的设计意图是让学生从游戏结果出发,通过正方形面积与正方体体积的表示方法,类比出乘方的表示形式,总结出相关概念。既体现了学生思维的过程,又渗透了转化思想。

  3、迁移训练,总结规律:

  在这个环节中,我首先要求学生把算式①﹙-4﹚×﹙-4﹚×﹙-4﹚,②﹙-2﹚×﹙-2﹚×﹙-2﹚×﹙-2﹚,③﹙- ﹚×﹙- ﹚×﹙- ﹚,④﹙- ﹚×﹙- ﹚写成乘方的形式,并说出其底数和指数分别是多少?接着评析例1,结合例1的解题结果,总结出负数的幂的正负的规律。然后启发学生思考将例1各题的底数换为正数或0,结果会怎么样呢?在学生练习讨论的基础上总结出有理数乘方的符号规律。即:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。最后结合例2,要求学生掌握计算器的用法,并运用计算器完成课本上的练习,进一步理解有理数乘方的符号规律。

  本环节的设计意图是通过变换例1的条件让学生加以练习,进而归纳出结论。有利于调动学生学习的兴趣,使其初步接触到数学的奇妙,提高其积极性与主动性。

  4、应用新知,尝试练习:

  本环节我主要设计了两组练习,第一组练习是以运用符号规律为目的,让学生通过计算﹙-2﹚ 、-2 、﹙ ﹚ ,进一步掌握有理数乘方符号规律的运用方法,并使其在对比﹙-2﹚ 与-2 ,﹙ ﹚ 与 的基础上总结出:当底数为负数和分数时,一定要用括号把底数括起来。

  第二组练习是以乘方的实际应用和综合应用为目的而设计的,共两个习题。希望借助第一题帮助学生学会运用所学的乘方知识解决实际问题,促使其树立一个学数学、用数学的思想。而第二题则是乘方与有理数大小比较的综合应用,可帮助学生提高数学分析能力和综合解题能力。

  5、归纳小结,形成体系:

  首先鼓励学生畅所欲言的总结本节课的收获与体会;然后帮助学生自主建构知识体系;接着布置本节课的课内与课外作业;最后说一下本节课的板书设计。

  四、设计说明

  本节课的教学设计,依据了《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标。内容安排是从引入概念出发,到有理数乘方符号规律的发现与应用,逐步展示知识的过程,使学生的思维层层展开、逐步深入。在教学中利用多媒体及学具辅助教学,展示图片与动画,使学生体会到数学无处不在,运用数学无时不有,并能从数学的角度发现和提出问题。如从简单的折纸游戏中就可得出不同类型的运用乘方问题,并能运用所学的数学知识和方法去探索、研究和解决。体现了新课标的教学理念。

1.2有理数 篇17

  教学目标 

  1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;

  2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;

  3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;

  4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;

  5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

  教学建议

  (一)重点、难点分析

  本节教学的重点是依据法则熟练进行运算。难点是法则的理解。

  (1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

  (2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。

  (3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。

  (二)知识结构

  (三)教法建议

  1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

  2.法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。

  3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。

  4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

  5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

  6.在探讨导出法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。

  教学设计示例

  (第一课时)

  教学目的

  1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行运算.

  2.通过运算,培养学生的运算能力.

  教学重点与难点

  重点:熟练应用法则进行加法运算.

  难点:法则的理解.

  教学过程 

  (一)复习提问

  1.有理数是怎么分类的?

  2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

  3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

  -3与-2;|3|与|-3|;|-3|与0;

  -2与|+1|;-|+4|与|-3|.

  (二)引入新课

  在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学运算.

  (三)进行新课 (板书课题)

  例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?

  两次行走后距原点0为8米,应该用加法.

  为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:

  1.同号两数相加

  (1)某人向东走5米,再向东走3米,两次一共走了多少米?

  这是求两次行走的路程的和.

  5+3=8

  用数轴表示如图

  从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.

  可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.

  (2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

  显然,两次一共向西走了8米

  (-5)+(-3)=-8

  用数轴表示如图

  从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.

  可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.

  总之,同号两数相加,取相同的符号,并把绝对值相加.

  例如,(-4)+(-5),……同号两数相加

  (-4)+(-5)=-( ),…取相同的符号

  4+5=9……把绝对值相加

  ∴ (-4)+(-5)=-9.

  口答练习:

  (1)举例说明算式7+9的实际意义?

  (2)(-20)+(-13)=?

  (3)

  2.异号两数相加

  (1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.

  5+(-5)=0

  可知,互为相反数的两个数相加,和为零.

  (2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.

  就是 5+(-3)=2.

  (3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.

  就是 3+(-5)=-2.

  请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?

  最后归纳

  绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.

  例如(-8)+5……绝对值不相等的异号两数相加

  8>5

  (-8)+5=-( )……取绝对值较大的加数符号

  8-5=3 ……用较大的绝对值减去较小的绝对值

  ∴(-8)+5=-3.

  口答练习

  用算式表示:温度由-4℃上升7℃,达到什么温度.

  (-4)+7=3(℃)

  3.一个数和零相加

  (1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

  显然,5+0=5.结果向东走了5米.

  (2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

  容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.

  请同学们把(1)、(2)画出图来

  由(1),(2)得出:一个数同0相加,仍得这个数.

  总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.

  有理数加法运算的三种情况:

  特例:两个互为相反数相加;

  (3)一个数和零相加.

  每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.

  (四)例题分析

  例1 计算(-3)+(-9).

  分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

  :(-3)+(-9)=-12.

  例2

  分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大”“一个较小”)

  解:

  解题时,先确定和的符号,后计算和的绝对值.

  (五)巩固练习

  1.计算(口答)

  (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

  (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

  2.计算

  (1)5+(-22); (2)(-1.3)+(-8)

  (3)(-0.9)+1.5; (4)2.7+(-3.5)

  探究活动

  题目 (1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0;

  (2)在1,2,3,…,11,12十二个数的前面添加正号或负号,使它们的和为零;

  (3)在1,2,3,4,…,99,100一百个数的前面添加正号或负号,使它们的和为0;

  (4) 在解决这个问题的过程中,你能总结出一些什么数学规律?

  参考答案  我们不妨不妨以第二问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.

  现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要减少这个正数的两倍,因此可得到两个(明显的)解答:

  (1)得+1变为-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①

  (2)将(+6-5)变为-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②

  又如,在11,10,8,7,5这五个数的前面添加负号,得

  12-11-10-9-8-7+6-5+4+3+2+1=-4,

  我们就有多种调整的方法,如将-8与+6变号,有

  12-11-10+9+8-7-6-5+4+3+2+1=0. ③

  经过几次试验,我们发现了规律:欲使十二个数的和为零,其中正数的和的绝对值与负数的和的绝对值必须相等.但

  1+2+3+4+5+6+7+8+9+10+11+12=78

  因此我们应该使各正数的和的绝对值与各负数的和的绝对值均为

  为了简便起见,我们把①式所表示的一个解答记为(12,11,10,5,1),那么②,③两式所表示的解答就分别记为(12,11,10,6)与(11,10,7,6,5).

  同时我们还发现:如果(12,11,10,5,1)是一个解答,那么(9,8,7,6,4,3,2)也必定是一个解答.同样,对应于②,③两式,还分别有另两个解答:(9,8,7,5,4,3,2,1)与(12,9,8,4,3,2,1).这个规律我们不妨叫做对偶律.

  此外我们还可发现,由于最大的三个数12,11,10其和33<39,因此必须再增加一个数6,才有解答(12,11,10,6),也就是说:添加负号的数至少要有四个;反过来,根据对偶律得:添加负号的数最多不超过八个.

  掌握了上述几条规律,我们就能够在很短的时间内得到许多解答.最后让我们告诉你,第(2)问的解答个数并非无数多,其总数是124个.