首页数学教案七年级数学教案1.6 整式的乘法(精选6篇)

1.6 整式的乘法(精选6篇)


1.6 整式的乘法(精选6篇)

1.6 整式的乘法 篇1

  (2)

  教学目标:

  1.经历探索整式的乘法运算法则的过程,会进行简单的整式的乘法运算.

  2.理解整式的乘法运算的算理,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力.

  教学重点:

  整式的乘法运算.

  教学难点:

  推测整式乘法的运算法则.

  教学过程:

  一、探索练习: 展示图画,让学生观察图画用不同的形式表示图画的面积.并做比较. 由此得到单项式与多项式的乘法法则. 观察式子左右两边的特点,找出单项式与多项式的乘法法则.

  跟着用乘法分配律来验证.

  单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项再把所得的积相加.

  二、例题讲解:

  例2:计算 (1)2ab(5ab2+3a2b);

  (2) 解略.

  三、巩固练习:

  1.判断题: (1)3a3·5a3=15a3                                                                                  (  )

  (2)                                                                             (  )

  (3)                                                        (  )

  (4)-x2(2y2-xy)=-2xy2-x3y                                                                (  )

  2.计算题:

  (1) ;                          (2) ; (3) ;                  (4)-3x(-y-xyz); (5)3x2(-y-xy2+x2);                     (6)2ab(a2b- c); (7)(a+b2+c3)·(-2a);                (8)[-(a2)3+(ab)2+3]·(ab3); (9) ;    (10) ; (11)( .

  四、应用题:

  1.有一个长方形,它的长为3acm,宽为(7a+2b)cm,则它的面积为多少?

  五、提高题:

  1.计算: (1)(x3)2―2x3[x3―x(2x2―1)];(2)xn(2xn+2-3xn-1+1).

  2.已知有理数a、b、c满足|a―b―3|+(b+1)2+|c-1|=0,求(-3ab)·(a2c-6b2c)的值.

  3.已知:2x·(xn+2)=2xn+1-4,求x的值.

  4.若a3(3an-2am+4ak)=3a9-2a6+4a4,求-3k2(n3mk+2km2)的值.

  小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算. 作业:课本p11习题1.3 教学后记:

  1.6 整式的乘法(3)——多项式乘以多项式

  教学目标:

  1.经历探索多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算.

  2.进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力.

  教学重点:

  多项式乘法的运算.

  教学难点:

  探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“符号”的问题

  教学过程:

  一、探索练习: 如图,计算此长方形的面积有几种方法?如何计算?小组讨论. 你从计算中发现了什么? 多项式与多项式相乘,_____________________________.

  二、巩固练习: 1.计算下列各题: (1) ;(2) ;(3) ; (4) ;(5) ;(6) ; (7) ;(8) ;(9) ; (10) ;(11) .

  三、提高练习:

  1.若 ;则m=_____,n=________ 2.若 ,则k的值为                                          (  ) (a)a+b (b)-a-b  (c)a-b     (d)b-a 3.已知 ,则a=______,b=______.

  4.若 成立,则x为__________.

  5.计算: +2 . 6.某零件如图示,求图中阴影部分的面积s.

  7.在 与 的积中不含 与 项,求p、q的值.

  一、  小结:

  本节课学习了多项式乘法的运算,要特别注意多项式乘法的运算 中不要“漏项”、和“符号”的正确处理.

  六、作业:第28页习题 1、2

1.6 整式的乘法 篇2

  整式的乘法是在学生学习了同底数幂的乘法、幂的乘方、积的乘方等知识之后安排的有关整式的运算学习。下面是由小编为大家带来的关于整式的乘法教学反思,希望能够帮到您!

  整式的乘法教学反思一

  这部分内容是在学习了有理数的四则混合运算、幂的运算性质、合并同类项、去括号、整式的加减等内容的基础上进行的,它是前面知识的延伸.这一部分具有承前启后的作用,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习的基础。整式的乘法这一部分内容主要分成三部分内容。

  第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,积的乘方应注意复习巩固。

  第二部分是单项式乘多项式,这一部分内容的依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定。

  第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。在混合运算中注意括号运算,不要漏括号。

  在整个这一部分的内容教学中,难点与易错点主要是:

  1、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。

  2、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。

  3、注意实际问题主要是图形的面积问题的正确解决。

  注重难点与学习方法。

  1、关注对教学难点的教学。

  新课程标准下,数学教育的根本任务是发展学生的思维,教材中的难点往往是数学思维迅速丰富、过程大步跳跃的地方,所以在本节课难点教学中既注意了化难为易的效果,又注意了化难为易的过程,在探究法则的过程中设置循序渐进的问题,不断启迪学生思考,发展学生的思维能力,在应用法则的过程中,又引导学生进行解题后的反思,这些将促使学生知识水平和能力水平同时提高。

  2、关注对学生学习方法的指导。

  建构主义学习理论认为,学生的学习是对知识主动建构的过程,同时学生要主动构建对外部信息的解释交流,所以在教学中注重营造学生自主参与、师生互动合作、探究创新为主线的教学模式,从学生已有的知识结构入手,逐渐发现和提出新问题,在解决问题的过程中学会思考,在探究中掌握知识。

  3、教育的根本目的在于促进每一个学生的发展,这也是数学教育的根本目的,因此教师在教学设计时,结合学生实际,有效整合教材,精选例习题,分层施教。本单元教学是以习题训练为主的,教学时注意选择了有层次的例题和练习,采用“兵教兵”的方法,组织学生开展合作学习。在探究问题的设计上也是由浅入深,目的就在于通过引导学生对问题的解决,能熟练掌握基础知识,灵活运用基本方法,提高分析问题和解决问题的能力。

  4、让学生在“做”中学。

  依据教学内容及教学要求,本节课通过拼图游戏,让学生动手操作,在活动中既复习了单项式与多项式相乘,又引出多项式相乘的运算。由于所拼图形的面积会有不同的表示方式,通过对比这些表示方式可以使学生用几何方法对多项式乘法法则有一个直观认识,再由几何解释的基础上从代数运算的角度将多项式与多项式相乘转化为单项式与多项式相乘,整个过程中学生在教师指导下经历操作、探究、解决问题的过程,引导学生在问题探究中不断质疑和释疑,体现了以探究为出发,以活动为中心,注重让学生从做中学的教学思路。

  5、加强反思,注重对学生数学思想方法的渗透。

  美国认知心理学家加涅指出,学习者学会了如何学习、如何记忆、如何获得更多的学习思维和分析思维,将会使它们变得越来越自主学习。所以,在教学中非常注重引导学生进行反思,在探究问题的过程中引导学生思考运用了哪些数学思想,例如本课中将多项式乘法转化为单项式乘以多项式的“转化”的思想,运用乘法分配律时的“整体”思想,拼图列式中运用的“数形结合”思想等,可以帮助学生从本质上理解所学知识,并提高解决问题的能力,真正使教学过程起到“授之以渔”的作用。

  整式的乘法教学反思二

  本节是学习了同底数幂的乘法、幂的乘方、积的乘方后的综合运用,是因式分解的逆运算,也是进行因式分解的基础,其中,单项式乘以单项式是本节的重点,单项式乘以多项式中项的符号的确定是本节的难点,而单项式乘以多项式有转化到单项式与单项式的相乘,因此,掌握好单项式乘以单项式是关键,本人从以下几方面作反思:

  (1)成功之处

  也从课本开头的问题引入,具体的数据,问题较简单,学生很快进入了状态,激发了学生求知的兴趣引出本节内容。然后将上式作适当的变形,用字母表示叙述几个例子,引出单项式乘以单项式法则的内容,通过类比的思想方法,由数的运算引出式的运算规律,体现了数学知识间具体与抽象、从特殊到一般的内在联系,符合学生的认知规律,并在得出结论的过程中,与学生一起探讨,注重学生的参与,从课堂学生做习题的情况来看,掌握的比较好。在讲解第二个知识点时,用形象的图形来揭示多项式乘以多项式公式,学生也较易掌握,而在突破符号这一难点时,设计让学生先找多项式中由哪些项所组成,然后用单项式去乘以这些项,添回原先和式中省略了的加号,结果在练习中学生也突破了最容易犯的符号错误。并提出通过多项式乘以多项式的法则,把这个问题转化到单项式乘以单项式中,而单项式乘以单项式又转化到数的乘法与同底数幂的乘法,体现新知识与已学知识间的联系,注意转化的思想方法。整堂课中学生参与性较强,气氛活跃,知识落实到位。

  (2)不足之处

  在公式的推导过程中,还应更加让学生自己去得出结论,体现认识知识循序渐进的过程。例题的讲解不妨让学生尝试去做,让学生去犯错,然后去加以纠正,以加深印象,防止同样错误的发生。在小结时,还可以让学生再次去总结本节课中常犯的错误。

  一节平常的数学课,经过反思,会发现许多值得推敲的地方,在许多细节的地方需要精心设计,这样才能做到以学生为主体,使学生学活学透,真正完成教学目标。

1.6 整式的乘法 篇3

  单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得积相加.其实,单项式与多项式相乘,就是利用乘法分配律转化为单项式与单项式相乘,这样新的知识就转化成了我们已经学过的知识了.即

  乘法分配律

  单项式与多项式相乘              单项式

  与单项式相乘             再把积相加。

  . 单项式与多项式相乘时要提醒学生注意以下点:

  1.     积是一个多项式,其项数,与多项式的项数相同.

  2.     运算时,要注意多项式中的每一项前面的”+””-”号是性质符号, 单项式乘多项式的每一项的结果,要先确定符号,然后再把项的绝对值相乘.

  单项式与多项式相乘,学生对乘法的分配律掌握得不好,出现漏乘,并且出现弄错符号的现象,有一部分学生乘法,还有对合并同类项和同底数幂相混淆的情况,或把加法看作是同底数幂来进行计算。

1.6 整式的乘法 篇4

  一、内容和内容解析

  1、内容:同底数幂的乘法。

  2、内容解析

  同底数幂的乘法是幂的一种运算,在整式乘法中具有基础地位。在整式的乘法中,多项式的乘法要转化为单项式的乘法,单项式的乘法要转化为幂的运算,而幂的运算以同底数幂的乘法为基础。

  同底数幂的乘法将同底数幂的乘法运算转化为指数的加法运算,其中底数a可以是具体的数、单项式、多项式、分式乃至任何代数式。同底数幂的乘法是类比数的乘方来学习的,首先在具体例子的基础上抽象出同底数幂的乘法的性质,进而通过推理加以推导,这一过程蕴含数式通性、从具体到抽象的思想方法。

  基于以上分析,确定本节课的教学重点:同底数幂的乘法的运算性质。

  二、目标和目标解析

  1、目标

  (1)理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算。

  (2)体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用。

  2、目标解析

  达成目标(1)的标志是:学生能根据乘方的意义推导出同底数幂乘法的性质,会用符号语言和文字语言表述这一性质,会用性质进行同

  底数幂的乘法运算。

  达成目标(2)的标志学生发现和推导同底数幂的乘法的运算性质,会用符号语言,文字语言表述这一性质,能认识到具体例子在发现结论的过程中所起的作用,能体会到数式通性在推到结论的过程中的重要作用。

  三、教学问题诊断分析

  在前面的学习中,学生已经学习了用字母表示数以及整式的加减运算,但是用字母表示幂以及幂的运算还是初次接触。幂的运算抽象程度较高,不易理解,特别对于am+n的指数的理解,因为它不仅抽象程度较高,而且运算结果反映在指数上,学生第一次接触,也很难理解。教学时,应引导学生回顾乘方的意义,从数式通性的角度理解字母表示的幂的意义,进而明确同底数幂乘法的运算性质。

  本节课的教学难点是:同底数幂的运算性质的理解与推导。

  四、教学过程设计

  1、创设情境,提出问题

  问题1: 一种电子计算机每秒可进行1014次运算,它工作103秒可进行多少次运算?

  回顾与思考:什么叫乘方? an 表示的意义是什么?其中a、n、an分别叫什么?

  师生活动:教师提出复习问题,学生主动思考并回答问题,并尝试用学过的知识解决问题。

  设计意图:从实际问题导入,让学生动手试一试,主动探索,在自己

  的实践中感受学习同底数幂的乘法的必要性,并通过有步骤、有依据的计算,为探索同底数幂的乘法的运算性质做好知识和方法的铺垫,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的.,学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行复习。

  2、探索新知

  问题2根据乘方的意义填空:

  25×22=( )×( )=_____________=2( ) a3×a2=( )×( )=______________=a( ) 5m×5n=( )×( )=______________=5

  (1) 探一探 观察几个式子左右两边底数、指数有什么变化?

  (2) 说一说 根据上面式子的计算结果,你能发现有什么规律吗?小

  组交流一下想法。

  (3) 猜一猜 am×an=?(m、n是正整数)

  师生活动:学生独立思考,然后小组交流思考结果。

  设计意图:从引例到“推一推”、“说一说”、“猜一猜”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步又有层次地进行概括抽象的过程。在这一过程中,要留给学生探索与交流的空间,让学生在自己的实践中获得运算法则。

  问题3 你能将你的猜想推导出来吗?

  am·an=(a·a·﹒﹒﹒·a) ·(a·a·﹒﹒﹒·a)——乘方的意义

  = a·a·﹒﹒﹒·a —— 乘法结合律

  =am+n ——乘方的意义

  师生活动:教师提出问题,学生独立思考并写出推导过程,教师用多媒体展示推导过程。

  设计意图:通过推导得出同底数幂的乘法的运算性质,让学生认识并体验数式通性,体会由具体到抽象的数学思想方法。

  追问1: 通过上面的探索与推导,你能用文字语言概括同底数幂乘

  法的运算性质吗?

  师生活动:教师提出问题学生尝试用文字语言概括同底数幂乘法的运

  算性质:同底数幂相乘,底数不变,指数相加。

  3、课堂练习巩固同底数幂乘法的运算性质

  练习1:计算题(结果写成幂的形式)

  1)103×104 =

  2)(—7)3·(—7)8 =

  3)a·a3 =

  4)(a—b)2·(a—b) =

  5)a·a3·a5 =

  师生活动:学生独立完成,小组合作交流答案。最后教师总结:在同底数幂的乘法运算中,底数可以是数、字母或式子。

  设计意图:让学生通过练习,领会同底数幂乘法的运算性质。并体会底数的变化,可以是数、字母或式子。

  问题4:a·a3·a5 =?同底数幂的乘法运算性质对于三个、四个······多个同底数幂相乘是否也适用呢?

  师生活动:教师提出问题,学生思考回答问题,并将这一性质推广到多个同底数幂相乘的情况。

  设计意图:通过利用文字语言概括性质以及对性质进行推广的过程,促进学生对公式结构特征的深层理解。

  练习2判断题(若错误,请在题后写出正确答案)

  1)a5 · a5= 2a5( )

  2)b5 + b5 = b10( )

  3)x5 ·x5 = x25( )

  4)y5 · y5 = 2y10( )

  5)m · m3 = m3( )

  6)n + n3 = n4( )

  师生活动:学生思考判断,领略“法官断案”的快乐。

  设计意图:让学生熟练地运用同底数幂乘法的运算性质,领略同底数幂乘法的魅力。

  4、课堂小结

  教师与学生一起回顾本节课所讲内容以及注意事项

  设计意图:

  5、布置作业

  必做:课本 P105页 第9题

  选做:课本 P106页 第13题

1.6 整式的乘法 篇5

  第一课时

  教学目标:

  1、经历探索整式的乘法运算法则的过程,会进行简单的整式的乘法运算。

  2、理解整式的乘法运算的算理,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力。

  教学重点:

  整式的乘法运算。

  教学难点:

  推测整式乘法的运算法则。

  教学过程:

  一、探索练习:展示图画,让学生观察图画用不同的形式表示图画的面积。并做比较。由此得到单项式与多项式的乘法法则。观察式子左右两边的特点,找出单项式与多项式的乘法法则。

  跟着用乘法分配律来验证。

  单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项再把所得的积相加。

  二、例题讲解:

  例2:计算(1)2ab(5ab2+3a2b);

  (2)解略。

  三、巩固练习:

  1、判断题:(1)3a3·5a3=15a3( )

  (2)( )

  (3)( )

  (4)—x2(2y2—xy)=—2xy2—x3y( )

  2、计算题:

  (1);(2);(3);(4)—3x(—y—xyz);(5)3x2(—y—xy2+x2);(6)2ab(a2b—c);(7)(a+b2+c3)·(—2a);(8)[—(a2)3+(ab)2+3]·(ab3);(9);(10);(11)(。

  四、应用题:

  1、有一个长方形,它的长为3acm,宽为(7a+2b)cm,则它的面积为多少?

  五、提高题:

  1、计算:(1)(x3)2―2x3[x3―x(2x2―1)];(2)xn(2xn+2—3xn—1+1)。

  2、已知有理数a、b、c满足|a―b―3|+(b+1)2+|c—1|=0,求(—3ab)·(a2c—6b2c)的值。

  3、已知:2x·(xn+2)=2xn+1—4,求x的值。

  4、若a3(3an—2am+4ak)=3a9—2a6+4a4,求—3k2(n3mk+2km2)的值。

  小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。作业:课本P11习题1。3教学后记:

  第二课时

  教学目标:

  1、经历探索多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算。

  2、进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力。

  教学重点:

  多项式乘法的运算。

  教学难点:

  探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“符号”的问题

  教学过程:

  一、探索练习:如图,计算此长方形的面积有几种方法?如何计算?小组讨论。你从计算中发现了什么?多项式与多项式相乘,_____________________________。

  二、巩固练习:1、计算下列各题:(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11)。

  三、提高练习:

  1、若;则m=_____,n=________

  2、若,则k的值为( )(A)a+b(B)—a—b(C)a—b(D)b—a

  3、已知,则a=______,b=______。

  4、若成立,则X为__________。

  5、计算:+2。

  6、某零件如图示,求图中阴影部分的面积S。

  7、在与的积中不含与项,求P、q的值。

  一、小结:

  本节课学习了多项式乘法的运算,要特别注意多项式乘法的运算中不要“漏项”、和“符号”的正确处理。

  六、作业:第28页习题 1、2

1.6 整式的乘法 篇6

  内容:

  整式的乘法单项式乘以多项式 P58—59

  课型:

  新授

  时间:

  学习目标:

  1、在具体情景中,了解单项式和多项式相乘的意义。

  2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。

  3、培养学生有条理的思考和表达能力。

  学习重点:

  单项式乘以多项式的法则

  学习难点:

  对法则的理解

  学习过程

  1、学习准备

  1、叙述单项式乘以单项式的法则

  2、计算

  (1)(— a2b) (2ab)3=

  (2) (—2x2y)2 (— xy)—(—xy)3(—x2)

  3、举例说明乘法分配律的应用。

  2、合作探究

  (一)独立思考,解决问题

  1、 问题: 一个施工队修筑一条路面宽为n m的公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的面积是多少?

  结合图形,完成填空。

  算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3天共修筑路面 m2。

  算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面 m2。

  因此,有 = 。

  3、你能用字母表示乘法分配律吗?

  4、你能尝试总结单项式乘以多项式的法则吗?

  (二)师生探究,合作交流

  1、例3 计算:

  (1) (—2x) (—x2x+1) (2)a(a2+a)— a2 (a—2)

  2、练一练

  (1)5x(3x+4) (2) (5a2 a+1)(—3a)

  (3)x(x2+3)+x2(x—3)—3x(x2x—1)

  (4)(a)(—2ab)+3a(ab—b—1))

  (三)学习体会

  对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?

  (四)自我测试

  1、教科书P59 练习 3,结合解题,体会单项式乘以多项式的几何意义。

  2、判断题

  (1)—2a(3a—4b) =—6a2—8ab ( )

  (2) (3x2—xy—1) x =x3 —x2y—x ( )

  (3)m2— (1— m) = m2— — m ( )

  3、已知ab2=—1,—ab(a2b3—ab3—b)的值等于 ( )

  A、—1 B、0 C、1 D、无法确定

  4、计算(20xx贺州中考)

  (—2a)( a3 —1) =

  5、(3m)2(m2+mn—n2)=

  (五)应用拓展

  1、计算

  (1)2a(9a2—2a+3)—(3a2) (2a—1)

  (2)x(x—3)+2x(x—3)=3(x2—1)

  2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。

  3、一块边长为xcm的正方形地砖,因需要被裁掉一块2cm宽的长条,为剩下部分面积是多少?