一次函数(通用16篇)
一次函数 篇1
〖教学目标〗◆1、理解正比例函数、一次函数的概念。◆2、会根据数量关系,求正比例函数、一次函数的解析式。 ◆3、会求一次函数的值。〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。 〖教学过程〗 比较下列各函数,它们有哪些共同特征? 提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。 定义:一般地,函数 叫做一次函数。当 时,一次函数 就成为 叫做正比例函数,常数 叫做比例系数。 强调:(1)作为一次函数的解析式 ,其中 中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中 符合什么条件? (2)在什么条件下, 为正比例函数? (3)对于一般的一次函数,它的自变量的取值范围是什么? 做一做: 下列函数中,哪些是一次函数?哪些是正比例函数?系数 和常数项 的值各为多少? 例1:求出下列各题中 与 之间的关系,并判断 是否为 的一次函数,是否为正比例函数: (1) 某农场种植玉米,每平方米种玉米6株,玉米株数 与种植面积 之间的关系。 (2) 正方形周长 与面积 之间的关系。 (3) 假定某种储蓄的月利率是0.16%,存入1000元本金后。本钱 与所存月数 之间的关系。 此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。 解:(1)因为每平方米种玉米6株,所以 平方米能种玉米 株。得 , 是 的一次函数,也是正比例函数。 (2)由正方形面积公式,得 , 不是 的一次函数,也不是正比例函数。 (3)因为该种储蓄的月利率是0.16%,存 月所得的利息为 ,所以本息和 , 是 的一次函数,但不是 的正比例函数。 练习:1.已知 若 是 的正比例函数,求 的值。 2.已知 是 的一次函数,当 时, ;当 时, (1) 求 关于 的一次函数关系式。 (2) 求当 时, 的值。 例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1) 设全月应纳税所得额为 元,且 。应纳个人所得税为 元,求 关于 的函数解析式和自变量的取值范围。 (2) 小明妈妈的工资为每月2600元,小聪妈妈的工资为每月2800元。问她俩每月应纳个人所得税多少元? 提示:此题较为复杂,而有关个人所得税的计算方法和一些专有名词学生可能很生疏。所以讲解时,首先要帮助学生理解问题,对个人所得税,应纳税所得额这些名词的含义要予以说明。尤其是根据累进税率计算个人所得税的方法,要举例说明。例如,某人某月工资收入为2400元,则应纳税所得额为 ,应纳个人所得税为 。讲解第(2)题时,要提醒学生注意函数解析式 中自变量 的意义, 表示的是工资中应纳税的部分,所以不能把题设中的工资额直接代入函数解析式计算个人所得税。 解:(1) 所求的函数解析式为 ,自变量 的取值范围为 。 (2)小明妈妈的全月应纳税所得额为 将 代入函数解析式,得 小聪妈妈的全月应纳税所得额为 将 代入函数解析式,得 答:小明妈妈每月应纳个人所得税155元,小聪妈妈每月应纳个人所得税175元。 练习:教科书 ,1,2。 作业:教科书 a组 ,b组;作业本(2)。
一次函数 篇2
教学目标 :
1、知道与正比例函数的意义.
2、能写出实际问题中正比例关系与关系的解析式.
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.
教学重点:对于与正比例函数概念的理解.
教学难点 :根据具体条件求与正比例函数的解析式.
教学方法:结构教学法、以学生“再创造”为主的教学方法
教学过程 :
1、复习旧课
前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)
2、引入新课
就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是.
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)
这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成
( )
的形式.
一般地,如果
( 是常数, )(括号内用红字强调)
那么y叫做x的.
特别地,当b=0时, 就成为
( 是常数, )
3、例题讲解
例1、某油管因地震破裂,导致每分钟漏出原油30公升
(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式
(2)破裂3.5小時后,共漏出原油多少公升
分析:y与x成正比例
解:(1)
(2) (升)
例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)
(1) 列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;
(2) 多长时间以后,小丸子的银行存款才能买随身听?
分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱
解:(1)
(2)1680=500+90x解得x=13.…
所以还需要14个月,小丸子才能买随身听
例3、已知函数 是正比例函数,求 的 值
分析:本题考察的是正比例函数的概念
解:
说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上
4、小结
由学生对本节课知识进行总结,教师板书即可.
5、布置作业
书面作业 :1、书后习题 2、自己写出一个实际中的的例子并进行讨论
探究活动
某居民小区按照分期付款的福利售房方式购房,政府给予一定的贴息.小明家购得一套现款价值120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和.(剩余欠款年利率为0.4%)
(1)若第x( 年小明家交付房款y元,求y与x的函数关系式;
(2)求第三、第十年的应付房款值.
参考答案:
(1); (2) 5340元 、5200元.
一次函数 篇3
教学目标:
1、知道与正比例函数的意义.
2、能写出实际问题中正比例关系与关系的解析式.
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.
教学重点:对于与正比例函数概念的理解.
教学难点:根据具体条件求与正比例函数的解析式.
教学方法:结构教学法、以学生“再创造”为主的教学方法
教学过程:
1、复习旧课
前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)
2、引入新课
就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是.
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)
这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成
( )
的形式.
一般地,如果
( 是常数, )(括号内用红字强调)
那么y叫做x的.
特别地,当b=0时, 就成为
( 是常数, )
3、例题讲解
例1、某油管因地震破裂,导致每分钟漏出原油30公升
(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式
(2)破裂3.5小時后,共漏出原油多少公升
分析:y与x成正比例
解:(1)
(2) (升)
例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)
(1) 列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;
(2) 多长时间以后,小丸子的银行存款才能买随身听?
分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱
解:(1)
(2)1680=500+90x解得x=13.…
所以还需要14个月,小丸子才能买随身听
例3、已知函数 是正比例函数,求 的 值
分析:本题考察的是正比例函数的概念
解:
说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上
4、小结
由学生对本节课知识进行总结,教师板书即可.
5、布置作业
书面作业 :1、书后习题 2、自己写出一个实际中的的例子并进行讨论
探究活动
某居民小区按照分期付款的福利售房方式购房,政府给予一定的贴息.小明家购得一套现款价值120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和.(剩余欠款年利率为0.4%)
(1)若第x( 年小明家交付房款y元,求y与x的函数关系式;
(2)求第三、第十年的应付房款值.
参考答案:
(1); (2) 5340元 、5200元.
一次函数 篇4
九江市永修县城丰中学 杨经文教学目标 1、经历一般规律的探索过程,发展学生的抽象思维能力。 2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。教学重点 1、 一次函数、正比例函数的概念及两者之间的关系。 2、 会根据已知信息写出一次函数的表达式。教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、课件教学过程一、创设问题情境,引入新课 1、 简单复习函数的概念(设在某一变化过程中有两个变量x和y,如果 ,那么我们称y是x的函数,其中x是自变量,y是因变量) 2、 演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么? 3、 汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?二、新课学习 1、 做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。 2、 一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+0.5x、y=100-0.18x在形式上有什么相同之处?让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量x与因变量y的次数都是1;③从形式上看,形式都为y=kx+b,k,b为常数。问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。 3、 例题学习例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800<x<1300,应将此情况提出让学生讨论。三、随堂练习1、找出下面的一次函数,并指出其中k、b的值。若不是一次函数,请说明理由。a、y= +x b、y=-0.8x c、y=0.3+2x2 d、y=6- 2、已知函数y=(m+1)x+(m2-1),当m ,y是x的一次函数;当m ,y是x的正比例函数。四、拓展应用 学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人200元。不过,甲旅行社开出的团体(15人以上)优惠办法是返还现金500元作为门票费,乙旅行社的团体优惠是,所有人员费用均打9折。设学生人数为x人,两家旅行社的收费分别为y甲、y乙,解答下列问题:(1)分别写出两家旅行社收费y(元)与学生人数x(人)之间的函数关系式;该关系式是什么函数?(y甲=200x-500,y乙=180x)(2)如果学生为20人,分别计算两家旅行社收费。到哪家合算?(y甲=200×20-500=3500(元);y乙=180×20=3600(元);y甲< y乙,所以到甲旅行社合算。)(3)在什么情况下,选择乙旅行社?(依题意得, y甲- y乙>0,即(200x-500) -180x>0,解不等式得,x>25,所以当学生多于25人时,到乙旅行社合算。)五、课堂小结 让学生归纳本节课学习内容:1、一次函数、正比例函数概念以及它们之间的关系。2、会根据已知信息写出一次函数的关系式。六、作业读一读:中国古代漏刻必做题:161页习题6.2第1、2、3题选做题:161页试一试
一次函数 篇5
教学目标 :
1、知道与正比例函数的意义.
2、能写出实际问题中正比例关系与关系的解析式.
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.
教学重点:对于与正比例函数概念的理解.
教学难点 :根据具体条件求与正比例函数的解析式.
教学方法:结构教学法、以学生“再创造”为主的教学方法
教学过程 :
1、复习旧课
前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)
2、引入新课
就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是.
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)
这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成
( )
的形式.
一般地,如果
( 是常数, )(括号内用红字强调)
那么y叫做x的.
特别地,当b=0时, 就成为
( 是常数, )
3、例题讲解
例1、某油管因地震破裂,导致每分钟漏出原油30公升
(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式
(2)破裂3.5小時后,共漏出原油多少公升
分析:y与x成正比例
解:(1)
(2) (升)
例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)
(1) 列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;
(2) 多长时间以后,小丸子的银行存款才能买随身听?
分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱
解:(1)
(2)1680=500+90x解得x=13.…
所以还需要14个月,小丸子才能买随身听
例3、已知函数 是正比例函数,求 的 值
分析:本题考察的是正比例函数的概念
解:
说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上
4、小结
由学生对本节课知识进行总结,教师板书即可.
5、布置作业
书面作业 :1、书后习题 2、自己写出一个实际中的的例子并进行讨论
探究活动
某居民小区按照分期付款的福利售房方式购房,政府给予一定的贴息.小明家购得一套现款价值120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和.(剩余欠款年利率为0.4%)
(1)若第x( 年小明家交付房款y元,求y与x的函数关系式;
(2)求第三、第十年的应付房款值.
参考答案:
(1); (2) 5340元 、5200元.
一次函数 篇6
学习目标:
1. 知道一次函数和正比例函数的概念,能根据所给的信息确定一次函数的表达式。
2.自主经历一次函数概念的抽象概括过程,努力拓展自己的抽象思维能力。
3.感知生活与数学间的联系,增强自己的数学应用能力。
学习重点:
1. 一次函数与正比例函数的概念
2. 确定一次函数的表达式
学习难点:
用一次函数解决实际问题
学习过程:
一.学前准备
1. 自学课本157页到161页,写下疑惑摘要:
2. 试写出下列各题中y与x之间的关系式,判断y是否为x的函数?
(1) 一棵树现高50cm,每个月长高2cm,x个月后这棵树的高度为y(cm)
(2)王大妈买了30元面粉,又买了某种大米,单价是2.6元,购买x千克大米时,一共花费y元。
(3)某种出租车的起步价是7元(3千米内),以后每走1千米(不足1千米按1千米计算)付2.4元。某人乘出租车x千米(x>3),付费y元。
二.自学、合作探究
(一)自学、相信自己
1.某弹簧的自然长度为3cm,在弹性限度内,所挂物体的质量x每增加1kg,弹簧长度y增加0.5cm。
(1)计算所挂物体质量分别为1kg、2kg、3kg、4kg、5kg时弹簧长度,填表:
x/kg
0
1
2
3
4
5
y/cm
(2)请写出y与x之间的关系式。
2.某汽车油箱中原有汽油100l,汽车每行驶50km耗油9l。
(1)完成下表
行驶x/km
0
50
100
150
200
300
剩油量y/l
(2)请写出y与x之间的关系式。
(二)思索、交流
1.观察上面各题结果,关系式有什么特点?能否用自己的话说说可以表示成什么样的形式?
2.练习
写出下列各题中x与y之间的关系式。判断y是否为x的一次函数?是否为正比例函数?
(1) 汽车以60km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)间的关系。
(2) 圆的面积y(cm2)与它的半径x(cm)之间的关系。
(3)如图,甲、乙两地相距100千米,现有一列火车从乙地出发,以80千米/时的速度向丙地行驶。设x(时)表示行驶时间,y(千米)表示火车与甲地的距离。甲 乙 丙
(三)应用、探究
1.我国现行个人工资、薪金所得税征收办法规定:月收入低于1000元的部分不收税;月收入超过1000元但低于1300元的部分征收5%的所得税……
(1)当月收入大于1000元而小于1300元时,写出应缴所得税y(元)与月收入x(元)之间的关系式。
(2)某人月收入1260元,应缴纳所得税多少元?
(3)如某人本月缴所得税12元,则此人本月工资多少元?
2.某联通公司的手机收费标准如下:每部手机每月缴纳月租费25元,另每通话1分钟交费0.18元。
(1)写出每月应缴费用y(元)与通话时间x(分)之间的关系式。
(2)自己提出一个问题并解决。
3.某电信公司的手机收费标准如下:没有月租费,但通话1分钟交费0.6元。请完成上题中的问题。
思考:你能结合2、3两题提一个问题吗?试试看,并解决。
三.学习体会
1. 体会一次函数与正比例函数的概念以及两者之间的关系。
2. 知道一次函数的表达式是什么?
四.自我测试
1. 选择
(1)下列各式中,表示y是x的正比例函数的是( )
a.y=x+1 b.y= c.y=x2 d.y=
(2)等腰三角形的周长为12,腰为x,底边为y,则底边y与腰x之间的关系式为
a.y=12-2x b.y=6-x c.y= d.y=
2. 填空
从a地向b地打长途电话,按时收费,3分钟内收费2.4元,每加1分,加收1.2元,如时间t≥3时,电话费y(元)与t(分)之间的关系是 ,
是 函数。
3.解决问题
有一种电脑的收费方式如下:第一次付费XX元就把电脑搬回家,但每月需向厂家付250元。
(1)若分期付款需x月,写出共付费y(元)与x(月)之间的关系式
(2)如需交6个月的分期付款,共付费多少元?
(3)如这个电脑共付费4900元,那么需交多少个月的分期付款?
五.自我提高
某批发商欲将一批海产品委托汽车运输公司由a地运往到b地,路程为120千米,汽车的速度为60千米/时,货运公司的收费项目及收费标准如下表:
运输量单价 (元/吨·千米)
冷藏费单价 (元/吨·时)
过路费(元)
2
5
200
1、设该批发商待运的海产品有x吨,货运公司要收取的费用为y元,试写出y与x之间的关系式。
2、如该批发商想运送5吨的海产品,付出运费1400元,运输公司愿意吗?假如你是公司的经理,你接受吗?
一次函数 篇7
【目的要求】1、使学生初步理解与正比例函数的概念。2、使学生能够根据实际问题中的条件,确定与正比例函数的解析式。【教学重点、难点】以及正比例函数的解析式【教学过程 】一、复习提问: 1、什么是函数? 2、函数有哪几种表示方法?3、举出几个函数的例子。二、新课讲解:可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。) (2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。) (3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。) (4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。) 由以上的层层设问,最后给出的定义。 一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的。 对这个定义,要注意: (1)x是变量,k,b是常数; (2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。) 由出发,当常数b=0时,kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。 在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的: 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。 写成式子是 (一定) 需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。 其次,要注意引导学生找出与正比例函数之间的关系:正比例函数是特殊的。三、课堂练习: 课本后练习第1题.四、答疑(老师在下面巡视,学生提问题)五、小结1) 什么是?它的解析式是什么?2) 正比例函数呢?六、课后作业 课本后习题1、2两题
一次函数 篇8
〖教学目标〗◆1、知识与技能目标:通过本节课学习,使学生进一步巩固一次函数的知识;掌握待定系数法的一般步骤,求一次函数的解析式;会用一次函数的知识来描述实际问题。 ◆2、过程与方法目标:为分散例3的教学难点,用引例作铺垫;另一方面,在解决实际问题中,选择用一次函数的知识来解决,突出建模思想。 ◆3、情感与态度目标:从沙漠蔓延是严重的自然灾害之一这个实际问题的提出,有利于激发学生的学习兴趣,养成植树造林、保护环境的好习惯。〖教学重点与难点〗◆教学重点:用待定系数法,求一次函数的解析式。◆教学难点:例3问题用待定系数法的过程比较复杂。 〖关键〗 讲解例3时通过合作学习,找出几个不变量: ①.沙漠面积每年以相同的速度增长。 ②.1995年底的沙漠面积。但它们是多少不知道。〖教学过程〗 (一)复习回顾,引入新知。我们在上一节课已学习了有关函数的概念,大家必定知道一次函数的解析式:生:函数y=kx+b (k≠0,k、b为常数)。我们称y是x的一次函数。那么要求出函数y=kx+b的解析式,必须要求出k、b这两个常数。这节课我们根据题 意,确定系数k、b,提出课题。(二)利用引例,探求新知。引例 已知y是x的一次函数,且当x=0时,y=2;当x=1时,y=-1。求y关于x的函数解析式。分析:① 由y是x的一次函数,它的解析式是什么?答:y=kx+b (k≠0,k、b为常数)。② 要求出函数y=kx+b的解析式,应求出k、b。③ 根据题意、得到关于k、b的方程组解:∵ y是x的一次函数,∴ y=kx+b (k≠0,k、b为常数),当x=0时,y=2;∴ 2=0+b当x=1时,y=-1∴ -1=k+b∴ k= - 3, b=2∴ y关于x的函数解析式是:y= -3 x+2。课内练习:p 163 做一做 1、2。通过引例和练习,我们可发现,对于已知函数的种类时,我们可以设这个函数的解析式,利用已知条件,通过列方程组的方法,来求k、b的值。这种方法称为待定系数法,下面简单小结它的解题步骤:⑴ 由y是x的一次函数,可以设所求函数的解析式为:y=kx+b (k≠0,k、b为常数),⑵ 把两对已知的变量的对应值分别代入y=kx+b ,得到关于k、b的二元一次方程组。⑶ 解这个关于k、b的二元一次方程组,求出k、b的值。⑷ 把求得k、b的值代入y=kx+b,得到所求函数的解析式。注:若题目中没有指明是哪一类函数,就要通过分析题设中所给的数量关系来判断。(三)合作学习、应用新知。例3 某地区从1995年底开始,沙漠面积几乎每年以相同的速度增长。据有关报道,到XX年底,该地区的沙漠面积已从1998年底的100.6万公顷扩大到101.2万公顷。(1) 可选用什么数学方法来描述该地区的沙漠面积的变化?(2) 如果该地区的沙漠化得不到治理,那么到2020年底,该地区的沙漠面积将增加到多少万公顷?(插入情感教育:①图片、②文字、时间不超过节分钟)
人类要生存,要推动社会向前发展,就必须同各种各样的困难作斗争,包括同自然灾害的斗争。沙漠蔓延是严重的自然灾害之一,因为它无情地吞噬土地,给人类带来极大的危害。据统计,全世界有63个国家受沙漠之害,总面积已达万平方公里,相当于两个中国,而且还在以每年5800平方公里的速度蔓延、扩大。通过学习,我们要植树造林、保护环境。(下面问题,先由学生独立思考,然后合作学习。对学生中出现的共性问题,教师分析,即以学生为主体)① 我们已经学习了那些描述量的变化的方法?答:正比例函数,一次函数。② 所给问题中有哪些量?哪些是常量?哪些是变量?答:常量: 沙漠面积几乎每年以相同的速度增长。1995年底的沙漠面积。变量: 沙漠面积随着时间的变化而不断扩大。③ 如果沙漠面积的增长速度为k万公顷/年,那么经x年增加了多少万公顷?答:kx.如果1995年底该地区的沙漠面积为b万公顷,经x年该地区的沙漠面积增加到y万公顷。y与x之间是哪一类函数关系式?答:∵ y=kx+b ∴ 是一次函数关系式。④ 求y关于x的函数解析式,只要求出哪两个常数的值。答:k、b。⑤ 根据题设条件,能否建立关于k、b的二元一次方程组?怎样建立?答:当x=3时,y=100.6 ; 当x=6时,y=101.2 。∴解: 设从1995年底该地区的沙漠面积为b万公顷,经过x年沙漠面积增加到y万公顷。由题意,得y=kx+b,且当x=3时,y=100.6 ; 当x=6时,y=101.2 。把这两对自变量和函数的对应值分别代入y=kx+b,得解这个方程组,得这样该地区沙漠面积的变化就由一次函数y=0.2x+100来进行描述。(3) 把x=25代入y=0.2x+100,得 y=0.2╳25+100=105(万公顷)。可见,如果该地区的沙漠化得不到治理,那么到2020年底,该地区的沙漠面积将增加到105万公顷。(四)课内练习 p 164 1、2。(五)归纳小结,梳理知识。请学生谈谈自己学习本节课的收获:1、 掌握待定系数法的解题步骤。2、 如果y是x的一次函数,那么可设y=kx+b,再用待定系数法。3、 对于没有指明是哪一类函数,应首先明确,这是何种函数。分层作业: 必做题 p 164 1、2、3、4。选做题 p 165 5、6.
一次函数 篇9
11.2 一次函数
§11.2.1 正比例函数
教学目标
1.认识正比例函数的意义.
2.掌握正比例函数解析式特点.
3.理解正比例函数图象性质及特点.
4.能利用所学知识解决相关实际问题.
教学重点
1.理解正比例函数意义及解析式特点.
2.掌握正比例函数图象的性质特点.
3.能根据要求完成转化,解决问题.
教学难点
正比例函数图象性质特点的掌握.
教学过程
ⅰ.提出问题,创设情境
一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.
1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?
2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?
3.这只燕鸥飞行1个半月的行程大约是多少千米?
我们来共同分析:
一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:
25600÷(30×4+7)≈200(km)
若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:
y=200x(0≤x≤127)
这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即
y=200×45=9000(km)
以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.
类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.
ⅱ.导入新课
首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?
1.圆的周长l随半径r的大小变化而变化.
2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积v(cm3)的大小变化而变化.
3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.
4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度t(℃)随冷冻时间t(分)的变化而变化.
答应:1.根据圆的周长公式可得:l=2 r.
2.依据密度公式p= 可得:m=7.8v.
3.据题意可知: h=0.5n.
4.据题意可知:t=-2t.
我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样.
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func-tion),其中k叫做比例系数.
我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?
[活动一]
画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.
1.y=2x 2.y=-2x
结论:
1.函数y=2x中自变量x可以是任意实数.列表表示几组对应值:
x -3 -2 -1 0 1 2 3
y -6 -4 -2 0 2 4 6
画出图象如图(1).
2.y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:
x -3 -2 -1 0 1 2 3
y 6 4 2 0 -2 -4 -6
画出图象如图(2).
3.两个图象的共同点:都是经过原点的直线.
不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限.函数y=-2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限.
尝试练习:
在同一坐标系中,画出下列函数的图象,并对它们进行比较.
1.y= x 2.y=- x
x -6 -4 -2 0 2 4 6
y= x
-3 -2 -1 0 1 2 3
y=- x
3 2 1 0 -1 -2 -3
比较两个函数图象可以看出:两个图象都是经过原点的直线.函数y= x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=- x的图象从左向右下降,经过二、四象限,即随x增大y反而减小.
让学生在完成上述练习的基础上总结归纳出正比例函数解析式与图象特征之间的规律:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,图象经过二、四象限,从左向右下降,即随x增大y反而减小.
正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.
[活动二]
经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?
让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理.
结论:
经过原点与点(1,k)的直线是函数y=kx的图象.
画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线.
ⅲ.随堂练习
用你认为最简单的方法画出下列函数图象:
1.y= x 2.y=-3x
ⅳ.课时小结
本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.
ⅴ.课后作业
1、 习题11.2─1、2、6题.
2、 《课堂感悟与探究》
ⅵ.活动与探究
某函数具有下面的性质:
1.它的图象是经过原点的一条直线.
2.y随x增大反而减小.
请你举出一个满足上述条件的函数,写出解析式,画出图象.
解:函数解析式:y=-0.5x
x 0 2
y 0 -1
板书设计
§11.2.1 正比例函数
一、正比例函数定义
二、正比例函数图象特征
三、正比例函数图象特征与解析式的关系规律
四、随堂练习
备课资料
汽车由天津驶往相距120千米的北京,s(千米)表示汽车离开天津的距离,t(小时)表示汽车行驶的时间.如图所示
1.汽车用几小时可到达北京?速度是多少?
2.汽车行驶1小时,离开天津有多远?
3.当汽车距北京20千米时,汽车出发了多长时间?
解法一:用图象解答:
从图上可以看出4个小时可到达.
速度= =30(千米/时).
行驶1小时离开天津约为30千米.
当汽车距北京20千米时汽车出发了约3.3个小时.
解法二:用解析式来解答:
由图象可知:s与t是正比例关系,设s=kt,当t=4时s=120
即120=k×4 k=30
∴s=30t.
当t=1时 s=30×1=30(千米).
当s=100时 100=30t t= (小时).
以上两种方法比较,用图象法解题直观,用解析式解题准确,各有优特点.
一次函数 篇10
教学目标:
1、知道与正比例函数的意义.
2、能写出实际问题中正比例关系与关系的解析式.
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.
教学重点:对于与正比例函数概念的理解.
教学难点:根据具体条件求与正比例函数的解析式.
教学方法:结构教学法、以学生“再创造”为主的教学方法
教学过程:
1、复习旧课
前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)
2、引入新课
就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是.
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)
这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成
( )
的形式.
一般地,如果
( 是常数, )(括号内用红字强调)
那么y叫做x的.
特别地,当b=0时, 就成为
( 是常数, )
3、例题讲解
例1、某油管因地震破裂,导致每分钟漏出原油30公升
(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式
(2)破裂3.5小時后,共漏出原油多少公升
分析:y与x成正比例
解:(1)
(2) (升)
第 1 2 页
一次函数 篇11
教学目标 :
1、知道与正比例函数的意义.
2、能写出实际问题中正比例关系与关系的解析式.
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.
教学重点:对于与正比例函数概念的理解.
教学难点 :根据具体条件求与正比例函数的解析式.
教学方法:结构教学法、以学生“再创造”为主的教学方法
教学过程 :
1、复习旧课
前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)
2、引入新课
就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是.
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)
这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成
( )
的形式.
一般地,如果
( 是常数, )(括号内用红字强调)
那么y叫做x的.
特别地,当b=0时, 就成为
( 是常数, )
3、例题讲解
例1、某油管因地震破裂,导致每分钟漏出原油30公升
(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式
(2)破裂3.5小時后,共漏出原油多少公升
分析:y与x成正比例
解:(1)
(2) (升)
例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)
(1) 列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;
(2) 多长时间以后,小丸子的银行存款才能买随身听?
分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱
解:(1)
(2)1680=500+90x解得x=13.…
所以还需要14个月,小丸子才能买随身听
例3、已知函数 是正比例函数,求 的 值
分析:本题考察的是正比例函数的概念
解:
说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上
4、小结
由学生对本节课知识进行总结,教师板书即可.
5、布置作业
书面作业 :1、书后习题 2、自己写出一个实际中的的例子并进行讨论
探究活动
某居民小区按照分期付款的福利售房方式购房,政府给予一定的贴息.小明家购得一套现款价值120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和.(剩余欠款年利率为0.4%)
(1)若第x( 年小明家交付房款y元,求y与x的函数关系式;
(2)求第三、第十年的应付房款值.
参考答案:
(1); (2) 5340元 、5200元.
一次函数 篇12
●教学目标
(一)教学知识点
1.了解两个条件确定一个一次函数;一个条件确定一个正比例函数.
2.能由两个条件求出一次函数的表达式,一个条件求出正比例函数的表达式,并解决有关现实问题.
(二)能力训练要求
能根据函数的图象确定一次函数的表达式,培养学生的数形结合能力.
(三)情感与价值观要求
能把实际问题抽象为数字问题,也能把所学知识运用于实际,让学生认识数字与人类生活的密切联系及对人类历史发展的作用.
●教学重点
根据所给信息确定一次函数的表达式.
●教学难点
用一次函数的知识解决有关现实问题.
●教学方法
启发引导法.
●教具准备
小黑板、三角板
●教学过程
Ⅰ.导入 新课
[师]在上节课中我们学习了一次函数图象的定义,在给定表达式的前提下,我们可以说出它的有关性质.如果给你有关信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.
Ⅱ.讲授新课
一、试一试(阅读课文P167页)想想下面的问题。
某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系。
(1)写出v与t之间的关系式;
(2)下滑3秒时物体的速度是多少?
分析:要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的图象,还是一次函数的图象,然后设函数解析式,再把已知的坐标代入解析
式求出待定系数即可.
[师]请大家先思考解题的思路,然后和同伴进行交流.
[生]因为函数图象过原点,且是一条直线,所以这是一个正比例函数的图象,设表达式为v=kt,由图象可知(2,5)在直线上,所以把t=2,v=5代入上式求出k,就可知v与t的关系式了.
解:由题意可知v是t的正比例函数.
设v=kt
∵(2,5)在函数图象上
∴2k=5
∴k=
∴v与t的关系式为
v= t
(2)求下滑3秒时物体的速度,就是求当t等于3时的v的值.
解:当t=3时
v= ×3= =7.5(米/秒)
二、想一想
[师]请大家从这个题的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式.大家互相讨论之后再表述出来.
[生]第一步应根据函数的图象,确定这个函数是正比例函数或是一次函数;
第二步设函数的表达式;
第三步根据表达式列等式,若是正比例函数,则找一个点的坐标即可;若是一次函数,则需要找两个点的坐标,把这些点的坐标分别代入所设的解析式中,组成关于k,b的一个或两个方程.
第四步解出k,b值.
第五步把k,b的值代回到表达式中即可.
[师]由此可知,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?
[生]确定正比例函数的表达式需要一个条件,确定一次函数的表达式需要两个条件.
三、阅读课文P167页例一,尝试分析解答下面例题。
[例]在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的
一次函数、当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的关系式,并求出所挂物体的质量为4千克时弹簧的长度.
[师]请大家先分析一下,这个例题和我们上面讨论的问题有何区别.
[生]没有画图象.
[师]在没有图象的情况下,怎样确定是正比例函数还是一次函数呢?
[生]因为题中已告诉是一次函数.
[师]对.这位同学非常仔细,大家应该向这位同学学习,对所给题目首先要认真审题,然后再有目标地去解决,下面请大家仿照上面的解题步骤来完成本题.
[生]解:设y=kx+b,根据题意,得
15=k+b, ①
16=3k+b. ②
由①得b=15-k
由②得b=16-3k
∴15-k=16-3k
即k=0.5
把k=0.5代入①,得k=14.5
所以在弹性限度内.
y=0.5x+14.5
当x=4时
y=0.5×4+14.5=16.5(厘米)
即物体的质量为4千克时,弹簧长度为16.5厘米.
[师]大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求函数表达式的步骤.
[生]它们的相同步骤是第二步到第四步.
求函数表达式的步骤有:
1.设函数表达式.
2.根据已知条件列出有关方程.
3.解方程.
4.把求出的k,b值代回到表达式中即可.
四.课堂练习
(一)随堂练习P168页
(题目见教材)
解:若一次函数y=2x+b的图象经过点A(-1,1),则b=3,该图象经过点B(1,-5)和点 C (- ,0)
(题目见教材)
解:分析直线l是一次函数y=kx+b的图象.由图象过(0,2),(3,0)两点可知:当x=0时,y=2;当x=3时,y=0。分别代入y=kx+b中列出两个方程,解法如上面例题。
五.课时小结
本节课我们主要学习了根据已知条件,如何求函数的表达式.
其步骤如下:
1.设函数表达式;
2.根据已知条件列出有关k,b的方程;
3.解方程,求k,b;
4.把k,b代回表达式中,写出表达式.
六、布置作业 :P169页1、2
一次函数 篇13
北师大版八年级上第七章二元一次方程组第六节 202页----204页
《二元一次方程与一次函数》教学设计
鹿泉市上庄镇中学 张亚茹
教学目标
1.知识与能力目标
(1)二元一次方程和一次函数的关系。
(2)二元一次方程组的图象解法。
(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。
2.情感态度价值观目标
通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。
教材分析
前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。
教学重点
1、二元一次方程和一次函数的关系。
2、能根据一次函数的图象求二元一次方程组的近似解。
教学难点
方程和函数之间的对应关系即数形结合的意识和能力。
教学方法
学生操作------自主探索的方法
学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程组和“形”----函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。
教学过程
一. 故事引入
迪卡儿的故事------蜘蛛给予的启示
十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?
在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。
这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。
二. 尝试探疑
1、Y=x+1
你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?
学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。
2、函数y=x+1上的任意一点的坐标是否满足方程x-y=-1?
以方程x-y=-1的解为坐标的点在不在函数y=x+1 的图象上?方程x-y=-1与函数y=x+1有何关系?
学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x-y=-1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x-y=-1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程 x-y=-1。
然后学生会用同样的方法得出另一个结论:以方程x-y=-1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x-y=-1到底有何关系呢?通过交流自动得出结论:以方程x-y=-1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。
3.在同一坐标系下,化出y=x+1与y=4x-2的图象,他们的交点坐标是什么?
方程组y=x+1的解是什么?二者有何关系?
y=4x-2
学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x-2的交点坐标就是由两个函数表达式组成的方程组
y=x+1 的解。
Y=4x-2
教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。
三. 方程与函数关系的应用
解方程组 x-2y=-2
2x-y=2
学生会很快的用消元法解出来。
老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。
一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:
1.把两个方程都化成函数表达式的形式。
2.画出两个函数的图象。
3.画出交点坐标,交点坐标即为方程组的解。
问题又出来了,有的同学的解是 x=2 有的同学的解是 x=2.1 y=2.1
y=1.9 有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。
老师提问:你能说一下用图象法解方程组的不足吗?
学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!
教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用Z+Z智能教育平台演示一下。
[点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。
四. 引申
方程组 x+y=2
x+y=5 解的情况如何?你能从函数的角度解释一下吗?
学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。
[点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。
五. 课后小结
本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程与“形”------函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。
六. 作业
1. 用作图象法解方程组2x+y=4
2x-3y=12
2.如图,直线L、L相交于点 A,试求出A点坐标。
这节课由故事引入,激发了学生极大的学习兴趣。然后提出了三个尖锐的问题,让学生尝试探索,在探索中既体会到了探索的艰辛,又体会到了成功的喜悦。在应用和引申过程中,尽量让学生自主的发现问题,自主的解决问题。学生在紧张、愉快中完成了这节课的学习。
北师大版八年级上第七章二元一次方程组第六节 202页----204页
《二元一次方程与一次函数》教学设计
鹿泉市上庄镇中学 张亚茹
教学目标
1.知识与能力目标
(1)二元一次方程和一次函数的关系。
(2)二元一次方程组的图象解法。
(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。
2.情感态度价值观目标
通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。
教材分析
前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。
教学重点
1、二元一次方程和一次函数的关系。
2、能根据一次函数的图象求二元一次方程组的近似解。
教学难点
方程和函数之间的对应关系即数形结合的意识和能力。
教学方法
学生操作------自主探索的方法
学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程组和“形”----函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。
教学过程
一. 故事引入
迪卡儿的故事------蜘蛛给予的启示
十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?
在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。
这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。
二. 尝试探疑
1、Y=x+1
你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?
学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。
2、函数y=x+1上的任意一点的坐标是否满足方程x-y=-1?
以方程x-y=-1的解为坐标的点在不在函数y=x+1 的图象上?方程x-y=-1与函数y=x+1有何关系?
学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x-y=-1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x-y=-1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程 x-y=-1。
然后学生会用同样的方法得出另一个结论:以方程x-y=-1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x-y=-1到底有何关系呢?通过交流自动得出结论:以方程x-y=-1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。
3.在同一坐标系下,化出y=x+1与y=4x-2的图象,他们的交点坐标是什么?
方程组y=x+1的解是什么?二者有何关系?
y=4x-2
学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x-2的交点坐标就是由两个函数表达式组成的方程组
y=x+1 的解。
Y=4x-2
教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。
三. 方程与函数关系的应用
解方程组 x-2y=-2
2x-y=2
学生会很快的用消元法解出来。
老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。
一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:
1.把两个方程都化成函数表达式的形式。
2.画出两个函数的图象。
3.画出交点坐标,交点坐标即为方程组的解。
问题又出来了,有的同学的解是 x=2 有的同学的解是 x=2.1 y=2.1
y=1.9 有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。
老师提问:你能说一下用图象法解方程组的不足吗?
学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!
教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用Z+Z智能教育平台演示一下。
[点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。
四. 引申
方程组 x+y=2
x+y=5 解的情况如何?你能从函数的角度解释一下吗?
学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。
[点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。
五. 课后小结
本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程与“形”------函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。
六. 作业
1. 用作图象法解方程组2x+y=4
2x-3y=12
2.如图,直线L、L相交于点 A,试求出A点坐标。
教学反思
这节课由故事引入,激发了学生极大的学习兴趣。然后提出了三个尖锐的问题,让学生尝试探索,在探索中既体会到了探索的艰辛,又体会到了成功的喜悦。在应用和引申过程中,尽量让学生自主的发现问题,自主的解决问题。学生在紧张、愉快中完成了这节课的学习。
一次函数 篇14
一次函数图像,是北师大八年级上册的内容。教学这一节时,我没有按照课本的讲解。我着这样安排的,先讲正比例函数的图像和性质,用一课时,今天我就是讲这一节。
先介绍函数的图像、画法。再画正比例函数的图像,引出正比例函数是经过原点的直线。接着介绍怎样作正比例函数的图像。用这种方法,作几个正比例函数的图像,总结规律。接着练习。
练习之后我备课时又有一个性质要介绍,由于时间的关系,没有讲解,就下课了!
反思:1、课堂中前段时间留给学生的时间长,没完成课前准备的教学任务。
2、本节课讲到第三个性质。
3、练习题要精而且少,难易适中。
4、注意课前准备,上课注意语言。
一次函数 篇15
教学目标 :
1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。
2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。
3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。
教学重点:
1、从实际问题中抽象概括出运动变化的规律,建立函数关系式。
2、通过函数的性质及定义域范围求函数的最值。
教学难点 :
从实际问题中抽象概括出运动变化的规律,建立函数关系式
教学方法:讨论式教学法
教学过程 :
例1、A校和B校各有旧电脑12台和6台,现决定送给C校10台、D校8台,已知从A校调一台电脑到C校、D校的费用分别是40元和80元,从B校调运一台电脑到C校、D校的运费分别是30元和50元,试求出总运费最低的调运方案,最低运费是多少?
(1)几分钟让学生认真读题,理解题意
(2)由题意可知,一种调配方案,对应一个费用。不同的调配方案对应不同的费用,在这个变化过程中,调配方案决定了总费用。它们之间存在着一定的关系。究竟是什么样的关系呢?需要我们建立数学模型,将之形式化、数学化。
解法(一)列表分析:
设从A校调到C校x台,则调到D校(12―x)台,B校调到C校是(10―x)台。B校调到D校是[6-(10-x)]即(x-4)台,总运费为y。
根据题意:
y =40x+80(12- x)+ 30(10-x)+50(x-4)
y =40x+960-80x+300-30x+50x-200
=-20x+1060(4≤x≤10,且x是正整数)
y =-20x+1060是减函数。
∴当x =10时,y有最小值ymin=860
∴调配方案为A校调到C校10台,调到D校2台,B校调到D校2台。
解法(二)列表分析
设从A校调到D校有x台,则调到C校(12―x)台。B校调到C校是[10-(12-x)]即(x-2)台。B校调到D校是(8―x)台,总运费为y。
y =40(12 – x)+ 80x+ 30(x –2)+50(8-x)
=480 – 40x+80x+30x – 60+400 – 50x
=20x +820(2≤x≤8,且x是正整数)
y =20x +820是增函数
∴x=2时,y有最小值ymin=860
调配方案同解法(一)
解法(三)列表分析:
解略
解法(四)列表分析:
解略
例2、公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件。经试销调查,发现销售量y(件),与销售单价x(元/件)可近似看作一次函数y =kx+b的关系
(1)根据图象,求一次函数y =kx+b的表达式
(2)设公司获得的毛利润(毛利润=销售总价―成本总价)为s元
试用销售单价x表示毛利润s;
解:如图所示
直线过点(600,400),(700,300)
∴400 =600k+b
300 =700k+b
k =-1,b =1000
∴ y =- x + 1000(500≤x≤800)
s =x(1000 – x)-500(1000 – x)
=1000x – x2 – 500000 + 500x
=- x2 + 1500x – 500000(500≤x≤800)
小结:本节课试图让学生体会到函数的本质是对应关系。在实际生活中,影响事物的因素往往是多方面的,而且它们之间存在一定的关系。数学是研究现实世界的空间形式和数量关系的科学。对于实际问题我们抽象概括出它的本质特征,将其数学化、形式化,形成数学模型。这个过程既体现了数学的高度抽象性,又因其高度的抽象性决定了数学的广泛应用性。
作业 :略
探究活动
(1) 在边防沙漠区,巡逻车每天行驶200千米,每辆巡逻车装载供行驶14天的汽油.现有5辆巡逻车同时由驻地A出发,完成任务再返回A.为让其余3辆尽可能向更远距离巡逻(然后一起返回),甲、乙两车行至途中B后,仅留足自己返回A必须的汽油,将多余的油给另3辆用,问另3辆行驶的最远距离是多少千米.
(2)30名劳力承包75亩地,这些地可种蔬菜、玉米和杂豆.每亩蔬菜需0.5个劳力,预计亩产值2000元;每亩玉米需0.25个劳力,预计亩产值800元;每亩杂豆需0.125个劳力,预计亩产值550元.怎样安排种植计划,才能使总产值最大?最大产值是多少元?
答案:
(1)设巡逻车行至B处用x天,从B到最远处用y天,则2[3(x+y)+2x]=14×5,即
又x>0,y>0,14×5-(5+2)x≤14×3,
所以x=4时,y取最大值5.另三辆车行驶最远距离:(4+5)×200=1800(千米).
(2)设种蔬菜、玉米、杂豆各x、y、z亩,总产量u元.则
所以45≤x≤55,即种蔬菜55亩,杂豆20亩,最大产值为121000元.
(3)某果品公司急需汽车,但无力购买,公司经理想租一辆.一出租公司的出租条件为:每百千米租费110元;一个体出租车司机的条件为:每月付800元工资,另外每百千米付10元油费.问该果品公司租哪家的汽车合算?
解 设汽车每月所行里程为x百千米,于是,应付给出租公司的费用为y1=110x,应付给个体司机的费用为y2=800+10x.画出它们的图象,易得图象交点坐标为(8,8800).由图象可知,当x<8时,y1<y2;当x=8时,y1=y2,当x>8时,y1>y2.
综合上述可知,汽车每月行驶里程少于800千米时,租国营出租汽车公司的汽车合算;每月行驶里程大于800千米时,租个体司机的汽车合算.因此,该果品公司应先估计一下每月用车的里程,然后根据估算的结果确定该租哪家的汽车.
一次函数 篇16
课 题:一次函数
教学目标 : 1.知道一次函数与正比例函数的意义
2.能写出实际问题中正比例函数与一次函数关系的解析式.
3.掌握“从特殊到一般”这种研究问题的方法
教学重点:将实际问题用一次函数表示.
教学难点 :将实际问题用一次函数表示.
教学方法:讲解法
教学过程 :
一. 复习提问
1. 什么是函数?请举例说明.
2. 购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)关系式是什么?
3. 在上述式子中变量是谁.常量是谁?自变量又是谁?
二. 讲解:
在前面我们遇到过这样一些函数:
y=x s=30t
y=2x+3 y=- x+2
这些函数都使用自变量的一次式来表示的,可以写成 y=kx+b 的形式
一般的,如果y=kx+b(k , b是常数,k≠0), 那么y叫做x的一次函数.
特别的,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y就叫做x的正比例函数.
例一 :
一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.
(1) 求小球速度v (米/秒)与时间t(秒)之间的函数关系式;
(2) 求3.5秒时小球的速度.
分析:v与t之间是正比例关系.
解: (1)v=2t
(2)t=3.5时,v=2×3.5=7(米/秒)
例二: 拖拉机工作时,油箱中有油40升.如果每小时耗油6升,求油箱中的余油量Q(升)与工作时间t(时)之间的函数关系式.
分析:t小时耗油6t升,从原油油量中减去6t,就是余油量.
解:Q=40 - 6t
课堂练习:
P96 1 ,2
小结:一次函数与正比例函数的意义,两者之间的关系,一次函数不一定是正比例函数,而正比例函数一定是一次函数,会将简单的实际问题用一次函数或正比例函数表示出来
作业 :P97 1。2。3。4。