首页数学教案高二数学教案《椭圆的简单几何性质》知识点总结(精选2篇)

《椭圆的简单几何性质》知识点总结(精选2篇)


《椭圆的简单几何性质》知识点总结(精选2篇)

《椭圆的简单几何性质》知识点总结 篇1

  椭圆的简单几何性质中的考查点:

  (一)、对性质的考查:

  1、范围:要注意方程与函数的区别与联系;与椭圆有关的求最值是变量的取值范围;作椭圆的草图。

  2、对称性:椭圆的中心及其对称性;判断曲线关于x轴、y轴及原点对称的依据;如果曲线具有关于x轴、y轴及原点对称中的任意两种,那么它也具有另一种对称性;注意椭圆不因坐标轴改变的固有性质。

  3、顶点:椭圆的顶点坐标;一般二次曲线的顶点即是曲线与对称轴的交点;椭圆中a、b、c的几何意义(椭圆的特征三角形及离心率的三角函数表示)。

  4、离心率:离心率的定义;椭圆离心率的取值范围:(0,1);椭圆的离心率的变化对椭圆的影响:当e趋向于1时:c趋向于a,此时,椭圆越扁平;当e趋向于0时:c趋向于0,此时,椭圆越接近于圆;当且仅当a=b时,c=0,两焦点重合,椭圆变成圆。

  (二)、课本例题的变形考查:

  1、近日点、远日点的概念:椭圆上任意一点p(x,y)到椭圆一焦点距离的最大值:a+c与最小值:a-c及取最值时点p的坐标;

  2、椭圆的第二定义及其应用;椭圆的准线方程及两准线间的距离、焦准距:焦半径公式。

  3、已知椭圆内一点m,在椭圆上求一点p,使点p到点m与到椭圆准线的距离的和最小的求法。

  4、椭圆的参数方程及椭圆的离心角:椭圆的参数方程的简单应用:

  5、直线与椭圆的位置关系,直线与椭圆相交时的弦长及弦中点问题。

《椭圆的简单几何性质》知识点总结 篇2

  在预习教材中的例 4 的基础上,证明:若 分别是椭圆 的左、右焦点,则椭圆上任一点 p ( )到焦点的距离(焦半径) ,同时思考当椭圆的焦点在 y 轴上时,结论如何?(此题意图是引导学生去进一步探究,为进一步研究椭圆的性质做准备)

  本堂课是在学生学习了椭圆的定义、标准方程的基础上,根据方程研究曲线的性质。按照学生的认知特点,改变了教材中原有安排顺序,引导学生从观察课前预习所作的图形入手,从分析对称开始,循序渐进进行探究。由教师点拨、指导,学生研究、合作、体验来完成。

  本节课借助多媒体手段创设问题情境,指导学生研究式学习和体验式学习(兴趣是前提)。例如导入,通过“神州五号”这样一个人们关注的话题引入,有利于激发学生的兴趣。再如,这节课是学生第一次利用曲线方程研究曲线性质,为了解决这一难点,在课前设计中改变了教材原有研究顺序,让学生从观察一个具体椭圆图形入手,从观察到对称性这一宏观特征开始研究,符合学生的认知特点,调动了学生主动参与教学的积极性,使他们进行自主探究与合作交流,亲身体验几何性质的形成与论证过程,变静态教学为动态教学。在研究范围这一性质时,课前设计中,只要学生能根据不等式知识解出就可以了,但学生采用了多种方法研究,这时教师没有打断他的思路,而是引导帮助他研究,鼓励学生创新,从而也实现了以学生为主,为学生服务。

  在离心率这一性质的教学中,充分利用多媒体手段,以轻松愉悦的动画演示,化解了知识的难点。

  但也有不足的地方:在对具体例子 的观察分析中,设计的问题过于具体,可能束缚了学生的思维,还没有放开。还有就是少讲多学方面也是我今后教学中努力的方向。

  感悟:新课堂是活动的课堂,讨论、合作交流可课堂,德育教育的课堂,应用现代技术的课堂,因此新教育理念、新课改下的新课堂需要教师和学生一起来培育。