三角形的中位线(通用12篇)
三角形的中位线 篇1
教学建议
知识结构
重难点分析
本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.
本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.
教法建议
1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用
2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解
教学设计示例
一、教学目标
1.掌握中位线的概念和三角形中位线定理
2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”
3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力
4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力
5. 通过一题多解,培养学生对数学的兴趣
二、教学设计
画图测量,猜想讨论,启发引导.
三、重点、难点
1.教学重点:三角形中位线的概论与三角形中位线性质.
2.教学难点 :三角形中位线定理的证明.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具
六、教学步骤
【复习提问】
1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).
2.说明定理的证明思路.
3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?
分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.
4.什么叫三角形中线?(以上复习用投影仪打出)
【引入新课】
1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.
(结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)
2.三角形中位线性质
了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.
如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.
三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.
应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.
由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).
(l)延长DE到F,使 ,连结CF,由 可得AD FC.
(2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.
(3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.
上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .
(证明过程略)
例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.
(由学生根据命题,说出已知、求证)
已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.‘
分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.
证明:连结AC.
∴ (三角形中位线定理).
同理,
∴GH EF
∴四边形EFGH是平行四边形.
【小结】
1.三角形中位线及三角形中位线与三角形中线的区别.
2.三角形中位线定理及证明思路.
七、布置作业
教材P188中1(2)、4、7
九、板书设计
三角形的中位线 篇2
教学目标
1.理解三角形中位线的概念,掌握它的性质及初步应用.
2.通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力.
教学重点与难点
重点是三角形中位线的性质定理.
难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用.
教学过程 设计
一、联想,提出问题.
1.(投影)复习平行线等分线段定理及两个推论(图4-89).
(1)请同学叙述定理及推论的内容.
(2)用数学表态式叙述图4-89(c)中的结论.
已知在ΔABC中,D为AB中点,DE∥BC,则AE=EC.
2.逆向思维,探索新结论.
引导学生思考:在图4-90中,反过来,若D,E分别为AB,AC中点,DE与BC有什么位置和数量关系呢?
启发学生逆向类比猜想:DE∥BC(逆向联想),DE= BC(因为AD= AB,AE= AC,类比联想ΔADE的第三边DE与ΔABC的第三边也存在相同的倍数关系).
由此引出课题.
二、证明猜想,形成定理
1.定义,强调它与三角形的中线的区别.
2.证明上述猜想成立,教师重点分析辅助线的作法的思考过程.
教师提示学生:所证结论即有平行又有数量关系,联想已有知识,可添加辅助线构造平行四边形,利用对平行且相等证明结论成立,或者用书上的同一法.教师引导学生发散思维后,还要注意比较,选择最简捷的证明方法.
3.板书一种证明过程.
4.将“猜想改成定理,引导学生用文字叙述出三角形中位线定理的具体内容.
三角形中位线定理:平行于第三边,并且等于它的一半.
5.分析定理成立的条件、结论及作用.
条件:连结两边中点得到中位线.
结论有两个,即位置关系和数量关系,根据题目需要选用.
作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.
三、应用举例、变式练习
(投影)例1(直线给出图4-90的问题)根据图4-91中的条件,回答问题.
(1) 已知:如图4-91(a),D,E分别为AB和AC的中点DE=5.BC;
(2) 如图4-91(b),D,E,F分别为AB,AC,BC中点,AC=8,∠C=70°,求DF和∠EDF;
(3) 如图4-91(c),①它包含几个图4-90这样的基本图形?②哪些三角形全等?③有几个平行四边形?④若ΔDEF周长为10 cm,求ΔABC的周长.⑤若ΔABC的面积等于20cm2,求ΔDEF的面积.⑥AF与DE有何关系?怎样用语言叙述这结论?
分析:
(1) 可利用复合投影片实现三个图的叠加过程,以提高课堂效益并帮助学生建立分解基本图形的思想.
(2) 通过此题总结:三角形三和中位线围成的三角形的周长等于原三角形周长的一半,面积等于原三角形面积的14.这个过程可以无限进行下去,如图4-92.
(3) 从解题过程可以得到:三角形的一条中位线(DE)与第三边上的中线(AF)互相平分.
(板书)例2 (包含图4-90的问题)如图4-93,AD是ΔABC的高,M,N和E分别为AB,AC,BC的中点.求证:(1)四边形MNDE为等腰梯形;(2)∠MEN=∠MDN.
分析:
(1) 由条件分析,图中可分解出“AD是ΔABC的高”,“是MN,ME,NE”,“直角三角形斜边上中线MD,ND” .想一想,这些基本图形都有什么性质?
(2) 从结论出发,要证四边形MEDN是等腰梯形,只需证MN∥DE,且MN≠DE及以下三种情况之一成立:①ME=ND;②MD=EN;③∠EMN=∠DNM.从而证得结论成立.
让学生口述,教师板书证明过程.
例3 构造图4-90问题.
(1) 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形;
(2)若已知四边形为特殊四边形呢?
已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94.求证:四边形EFGH是平行四边形.
分析:
(1)已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造的基本图形.
(2)让学生画图观察并思考此题的特殊情况,如图4-95,顺次连结各种特殊四边形中点得到什么图形?
投影显示:
四、师生共同小结
1.教师提问引起学生思考:
(1)这节课学习了哪些具体内容:
(2)用什么思维方法提出猜想的?
(3)应注意哪些概念之间的区别?
2.在学生回答的基础上,教师投影显示以下与三角形一边中点及线段倍分关系有关的基
本图形(如图4-96).
(1)注意三角形中线与中位线的区别,图4-96(a),(b).
(2)三角线的中位线的判定方法有两种:定义及判定定理,图4-96(b),(。).
(3)证明线段倍分关系的方法常有三种,图4-96(b),(d),.
3.先猜想后证明的研究问题方法;逆向思维,探究逆命题是否成立,由此经常得到一些好
的结论;添辅助线构造基本图形来使用性质的解题方法.
4.有这样的性质,那么梯形有中位线吗?它有类似的性质吗?(为下节
课作思维上的准备)
五、作业
课本第180页第4题,第184页第5,7,8题,第185页B组第1题.
补充题:(构造)
1.如图4-97,AD是上ABC的外角平分线,CD上AD于D.E是BC的中点.求证:(1)DE ∥/ AB:(2)DE = (AB+AC).
(提示:延长CD交BA延长线于F.)
2.如图 4-98,正方形 ABCD对角线交于点O,E是BO中点,连结”并延长交BC于F.求证:BF= CF.(提示:作OG∥EF交于BC于G.)
3.如图4-99,在四边形 ABCD中,AB=CD, E,F分别是AD,BC的中点,延长 BA和CD分别交FE的延长线于 G,H点.求证:∠BGF=∠CHF.(提示:连结 AC,取 AC中声、 M,连结EM,FM.)
课堂教学设计说明
本教学过程 设计需1课时完成.
1.本节课的设计,力求让学生通过逆向思维及类比联想自己实践“分析——猜想——证
明”的过程.变被动接受知识为主动应用已有知识,探索新知识,获得成功的喜悦.
2.在应用性质定理时,通过一组层次递进的变式题的训练,由直接给出定理的基本图形
到包含基本图形,学生分解图形后使用性质,再到通过添加辅助线构造基本图形来使用性质,
学生逐步学会运用性质来解决问题,他们的解题能力、思考问题的方法得到逐步提高.
三角形的中位线 篇3
教学建议
知识结构
重难点分析
本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.
本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.
教法建议
1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用
2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解
教学设计示例
一、教学目标
1.掌握中位线的概念和三角形中位线定理
2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”
3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力
4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力
5. 通过一题多解,培养学生对数学的兴趣
二、教学设计
画图测量,猜想讨论,启发引导.
三、重点、难点
1.教学重点:三角形中位线的概论与三角形中位线性质.
2.教学难点 :三角形中位线定理的证明.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具
六、教学步骤
【复习提问】
1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).
2.说明定理的证明思路.
3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?
分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.
4.什么叫三角形中线?(以上复习用投影仪打出)
【引入新课】
1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.
(结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)
2.三角形中位线性质
了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.
如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.
三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.
应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.
由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).
(l)延长DE到F,使 ,连结CF,由 可得AD FC.
(2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.
(3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.
上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .
(证明过程略)
例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.
(由学生根据命题,说出已知、求证)
已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.‘
分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.
证明:连结AC.
∴ (三角形中位线定理).
同理,
∴GH EF
∴四边形EFGH是平行四边形.
【小结】
1.三角形中位线及三角形中位线与三角形中线的区别.
2.三角形中位线定理及证明思路.
七、布置作业
教材P188中1(2)、4、7
九、板书设计
三角形的中位线 篇4
教学建议
知识结构
重难点分析
本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.
本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.
教法建议
1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用
2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解
教学设计示例
一、教学目标
1.掌握中位线的概念和三角形中位线定理
2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”
3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力
4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力
5. 通过一题多解,培养学生对数学的兴趣
二、教学设计
画图测量,猜想讨论,启发引导.
三、重点、难点
1.教学重点:三角形中位线的概论与三角形中位线性质.
2.教学难点:三角形中位线定理的证明.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具
六、教学步骤
【复习提问】
1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).
2.说明定理的证明思路.
3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?
分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.
4.什么叫三角形中线?(以上复习用投影仪打出)
【引入新课】
1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.
(结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)
2.三角形中位线性质
了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.
如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.
三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.
应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.
由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).
(l)延长DE到F,使 ,连结CF,由 可得AD FC.
(2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.
(3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.
上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .
(证明过程略)
例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.
(由学生根据命题,说出已知、求证)
已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.‘
分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.
证明:连结AC.
∴ (三角形中位线定理).
同理,
∴GH EF
∴四边形EFGH是平行四边形.
【小结】
1.三角形中位线及三角形中位线与三角形中线的区别.
2.三角形中位线定理及证明思路.
七、布置作业
教材P188中1(2)、4、7
九、板书设计
三角形的中位线 篇5
教学建议
知识结构
重难点分析
本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.
本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.
教法建议
1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用
2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解
教学设计示例
一、教学目标
1.掌握中位线的概念和三角形中位线定理
2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”
3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力
4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力
5. 通过一题多解,培养学生对数学的兴趣
二、教学设计
画图测量,猜想讨论,启发引导.
三、重点、难点
1.教学重点:三角形中位线的概论与三角形中位线性质.
2.教学难点:三角形中位线定理的证明.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具
六、教学步骤
【复习提问】
1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).
2.说明定理的证明思路.
3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?
分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.
4.什么叫三角形中线?(以上复习用投影仪打出)
【引入新课】
1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.
(结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)
2.三角形中位线性质
了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.
如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.
三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.
应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.
由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).
(l)延长DE到F,使 ,连结CF,由 可得AD FC.
(2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.
(3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.
上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .
(证明过程略)
例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.
(由学生根据命题,说出已知、求证)
已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.‘
分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.
证明:连结AC.
∴ (三角形中位线定理).
同理,
∴GH EF
∴四边形EFGH是平行四边形.
【小结】
1.三角形中位线及三角形中位线与三角形中线的区别.
2.三角形中位线定理及证明思路.
七、布置作业
教材P188中1(2)、4、7
九、板书设计
三角形的中位线 篇6
教学建议
知识结构
重难点分析
本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.
本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.
教法建议
1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用
2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解
教学设计示例
一、教学目标
1.掌握中位线的概念和三角形中位线定理
2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”
3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力
4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力
5. 通过一题多解,培养学生对数学的兴趣
二、教学设计
画图测量,猜想讨论,启发引导.
三、重点、难点
1.教学重点:三角形中位线的概论与三角形中位线性质.
2.教学难点 :三角形中位线定理的证明.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具
六、教学步骤
【复习提问】
1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).
2.说明定理的证明思路.
3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?
分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.
4.什么叫三角形中线?(以上复习用投影仪打出)
【引入新课】
1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.
(结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)
2.三角形中位线性质
了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.
如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.
三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.
应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.
由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).
(l)延长DE到F,使 ,连结CF,由 可得AD FC.
(2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.
(3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.
上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .
(证明过程略)
例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.
(由学生根据命题,说出已知、求证)
已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.‘
分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.
证明:连结AC.
∴ (三角形中位线定理).
同理,
∴GH EF
∴四边形EFGH是平行四边形.
【小结】
1.三角形中位线及三角形中位线与三角形中线的区别.
2.三角形中位线定理及证明思路.
七、布置作业
教材P188中1(2)、4、7
九、板书设计
三角形的中位线 篇7
教学目标
1.理解三角形中位线的概念,掌握它的性质及初步应用.
2.通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力.
教学重点与难点
重点是三角形中位线的性质定理.
难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用.
教学过程 设计
一、联想,提出问题.
1.(投影)复习平行线等分线段定理及两个推论(图4-89).
(1)请同学叙述定理及推论的内容.
(2)用数学表态式叙述图4-89(c)中的结论.
已知在ΔABC中,D为AB中点,DE∥BC,则AE=EC.
2.逆向思维,探索新结论.
引导学生思考:在图4-90中,反过来,若D,E分别为AB,AC中点,DE与BC有什么位置和数量关系呢?
启发学生逆向类比猜想:DE∥BC(逆向联想),DE= BC(因为AD= AB,AE= AC,类比联想ΔADE的第三边DE与ΔABC的第三边也存在相同的倍数关系).
由此引出课题.
二、证明猜想,形成定理
1.定义三角形的中位线,强调它与三角形的中线的区别.
2.证明上述猜想成立,教师重点分析辅助线的作法的思考过程.
教师提示学生:所证结论即有平行又有数量关系,联想已有知识,可添加辅助线构造平行四边形,利用对平行且相等证明结论成立,或者用书上的同一法.教师引导学生发散思维后,还要注意比较,选择最简捷的证明方法.
3.板书一种证明过程.
4.将“猜想改成定理,引导学生用文字叙述出三角形中位线定理的具体内容.
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.
5.分析定理成立的条件、结论及作用.
条件:连结两边中点得到中位线.
结论有两个,即位置关系和数量关系,根据题目需要选用.
作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.
三、应用举例、变式练习
(投影)例1(直线给出图4-90的问题)根据图4-91中的条件,回答问题.
(1) 已知:如图4-91(a),D,E分别为AB和AC的中点DE=5.BC;
(2) 如图4-91(b),D,E,F分别为AB,AC,BC中点,AC=8,∠C=70°,求DF和∠EDF;
(3) 如图4-91(c),①它包含几个图4-90这样的基本图形?②哪些三角形全等?③有几个平行四边形?④若ΔDEF周长为10 cm,求ΔABC的周长.⑤若ΔABC的面积等于20cm2,求ΔDEF的面积.⑥AF与DE有何关系?怎样用语言叙述这结论?
分析:
(1) 可利用复合投影片实现三个图的叠加过程,以提高课堂效益并帮助学生建立分解基本图形的思想.
(2) 通过此题总结:三角形三和中位线围成的三角形的周长等于原三角形周长的一半,面积等于原三角形面积的14.这个过程可以无限进行下去,如图4-92.
(3) 从解题过程可以得到:三角形的一条中位线(DE)与第三边上的中线(AF)互相平分.
(板书)例2 (包含图4-90的问题)如图4-93,AD是ΔABC的高,M,N和E分别为AB,AC,BC的中点.求证:(1)四边形MNDE为等腰梯形;(2)∠MEN=∠MDN.
分析:
(1) 由条件分析,图中可分解出“AD是ΔABC的高”,“三角形的中位线是MN,ME,NE”,“直角三角形斜边上中线MD,ND” .想一想,这些基本图形都有什么性质?
(2) 从结论出发,要证四边形MEDN是等腰梯形,只需证MN∥DE,且MN≠DE及以下三种情况之一成立:①ME=ND;②MD=EN;③∠EMN=∠DNM.从而证得结论成立.
让学生口述,教师板书证明过程.
例3 构造图4-90问题.
(1) 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形;
(2)若已知四边形为特殊四边形呢?
已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94.求证:四边形EFGH是平行四边形.
分析:
(1)已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位线”的基本图形.
(2)让学生画图观察并思考此题的特殊情况,如图4-95,顺次连结各种特殊四边形中点得到什么图形?
投影显示:
四、师生共同小结
1.教师提问引起学生思考:
(1)这节课学习了哪些具体内容:
(2)用什么思维方法提出猜想的?
(3)应注意哪些概念之间的区别?
2.在学生回答的基础上,教师投影显示以下与三角形一边中点及线段倍分关系有关的基
本图形(如图4-96).
(1)注意三角形中线与中位线的区别,图4-96(a),(b).
(2)三角线的中位线的判定方法有两种:定义及判定定理,图4-96(b),(。).
(3)证明线段倍分关系的方法常有三种,图4-96(b),(d),.
3.先猜想后证明的研究问题方法;逆向思维,探究逆命题是否成立,由此经常得到一些好
的结论;添辅助线构造基本图形来使用性质的解题方法.
4.三角形的中位线有这样的性质,那么梯形有中位线吗?它有类似的性质吗?(为下节
课作思维上的准备)
五、作业
课本第180页第4题,第184页第5,7,8题,第185页B组第1题.
补充题:(构造三角形的中位线)
1.如图4-97,AD是上ABC的外角平分线,CD上AD于D.E是BC的中点.求证:(1)DE ∥/ AB:(2)DE = (AB+AC).
(提示:延长CD交BA延长线于F.)
2.如图 4-98,正方形 ABCD对角线交于点O,E是BO中点,连结”并延长交BC于F.求证:BF= CF.(提示:作OG∥EF交于BC于G.)
3.如图4-99,在四边形 ABCD中,AB=CD, E,F分别是AD,BC的中点,延长 BA和CD分别交FE的延长线于 G,H点.求证:∠BGF=∠CHF.(提示:连结 AC,取 AC中声、 M,连结EM,FM.)
课堂教学设计说明
本教学过程 设计需1课时完成.
1.本节课的设计,力求让学生通过逆向思维及类比联想自己实践“分析——猜想——证
明”的过程.变被动接受知识为主动应用已有知识,探索新知识,获得成功的喜悦.
2.在应用性质定理时,通过一组层次递进的变式题的训练,由直接给出定理的基本图形
到包含基本图形,学生分解图形后使用性质,再到通过添加辅助线构造基本图形来使用性质,
学生逐步学会运用性质来解决问题,他们的解题能力、思考问题的方法得到逐步提高
三角形的中位线 篇8
【教案背景】
1、面向学生:初二
2、课时:
3、学科:数学
4、学生准备:提前预习本节课的内容,尺规和练习本。
【教材分析】
1、教材的地位和作用:
本节课是初二数学下册第十八章18.1.2平行四边形判定中的第三课时三角形中位线的内容。三角形中位线既是前面已学过的平行线、全等三角形、平行四边形性质等知识内容的应用和深化,同时为进一步学习梯形、任意四边形的中位线打下基础,尤其是在判定两直线平行和论证线段倍分关系时常常用到。在三角形中位线定理的证明及应用中,处处渗透了归纳、类比、转化等化归思想,它是数学解题的重要思想方法,对拓展学生的思维有着积极的意义。
2、教学目标:
知识目标:
(1)理解三角形中位线的概念
(2)会证明三角形的中位线定理
(3)能应用三角形中位线定理解决相关的问题;
过程与方法目标:
进一步经历“探索—发现—猜想—证明”的过程,发展推理论证的能力。体会合情推理与演绎推理在获得结论的过程中发挥的作用。
情感目标
画一个任意三角形的中位线,用猜测和度量判断中位线与第三边的位置和数量关系,进一步培养学生合作、交流的能力和团队精神,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。
3、教学重难点:
重点:理解并应用三角形中位线定理。
难点:三角形中位线定理的证明和运用。
【教学方法】
学生在前面的数学学习中具有了一定的合作学习的经验,为了让学生进一步经历、猜测、证明的过程,我采取:启发式教学,在课堂教学。
【教学过程】
(一)回顾三角形中位线:
三角形一个顶点和对边中点连结的线段
情感分析:让学生首先通过原有知识三角形中线【端点特征】来引入三角形中位线更加好理解。
(二)概念提取:像(EF、FD、DE)的线段的端点有什么特点?
情感分析:通过问题,让学生去发现中位线端点的特点,加深对中位线定义的提取和理解。
(三)引出三角形的中位线定义:
连接三角形两边中点的线段叫做中位线。
情感分析:直接引出定义,让学生更容易去理解中位线的含义并且对端点特征的理解。快而简单且易懂。
(四)概念对比记忆:
(1)相同之处——都和边的中点有关;
(2)不同之处:三角形中位线:中点连线;三角形中线:中点与端点(顶点)连线
情感分析:通过对比记忆,加深两者的区别与联系,对中位线的理解进一步提升。
(五)探究中位线的性质:
一般的三角形的中位线(DE)与第三边(BC)存在哪些关系?
问题:①DE与BC存在怎么样的位置和数量关系?
【作图观察并猜想】
②结合图形,请找出已知部分?要求证部分?
情感分析:对定义的理解后,方便对中位线性质的一个探究,在探究过程中,让学生通过画任意三角形的一条中位线,并且通过学习工具(量角器、三角板、刻度尺和圆规),通过量同位角和三角板的`推移来观察猜测中位线与第三边是平行的,再来通过刻度尺测量是它的二分之一。由于方法的局限性(误差),所以探究用数学客观的逻辑推理中位线的性质。而且通过命题来找出已知和求证部分也是学生必须掌握的重难点,通过这里也可以让学生再次巩固提升。
(六)证明中位线与第三边的关系:
已知:在△ABC中,D、E分别是AB和AC中点
证明:
方法一:证明:延长DE到F,使EF=DE,连结CF.
方法二:证明:如图,延长DE至F,使EF=DE,连接CD、AF、CF
情感分析:通过证明的方法,引导学生做辅助线时候的逻辑推理,多问学生为什么会想到这样去做辅助线的。倍长线段是怎么想到的?为什么会想到连接CF?为什么会想到证明四边形?引发学生思考。
(七)归纳:
三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半。
用符号语言表示:∵DE是△ABC的中位线
∴
位置关系且数量关系
情感分析:通过刚刚的证明引导学生最后归纳出今天新课的重点内容三角形中位线的性质,对数学符号语言的书写格式进行板书,让学生更加理解和学会书写格式要求。
(八)练习巩固:
1、在△ABC中,E,D,F分别是AB,BC,CA的中点,AB=6,AC=4,BC=5,则△EDF的周长是?
情感分析:通过简单的运用,能够让学生从简单的基础知识对中位线性质的掌握,基本全班学生都能从中掌握。
变式1:在△ABC中,E,D,F分别是AB,BC,CA的中点,AB=6,AC=4,则四边形AEDF的周长是?
情感分析:通过变式1让学生在原来题型的变化,掌握异题同解的思想方法,促进学生对数学产生兴趣。
2、如图,在△ABC中,中线BE,CD交于点O、F、G分别是OB、OC的中点
求证:四边形DFGE是平行四边形
情感分析:证明平行四边形的时候往往要用三角形去解决,所以引导学生用平行四边形判定的时候一定要主要平行且相等,要学会在哪个三角形找出相应的中位线来进行运用。
(九)巩固提高:
3、已知:四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.
辅助线:当有中位线三角形不完整时则需补完整三角形
情感分析:中点四边形主要归类为怎么去做辅助线,引导学生在折线段中的中点,找到相应的三角形中位线,主要是攻克三角形中位线的做法。
【动点问题】
4、如图:长方形ABCD中R、P分别是DC、BC边上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,线段EF长
A.逐渐增大
B.逐渐变小
C.不变
D.先增大后变少
情感分析:涉及到动点问题
首先要教会学生要学会找出
哪些是定点,哪些是动点的问题,才能解决相应的变化问题【通过动画来演示后再进行证明讲解,让学生有一个直观的认识后,再用客观推理论证,培养严密的逻辑思维推理能力】。
5、如图,点E、F、G、H分别是线段AB、BC、CD、AD的中点,求证四边形EFGH是平行四边形
情感分析:学会做辅助线,引导学生构成完整的三角形中位线,直接运用定理。
6、已经△ABC是锐角三角形,分别以AB、AC为边向外侧作两个等边△ABM和△CAN,D、E、F分别是MB、BC、CN的中点,连结DE,FE
求证:DE=EF
情感分析:构成完整的三角形中位线后,要证明线段相等,则需要证明三角形的全等,找到相应的判定根据已知的条件,回顾全等三角形的证明。
7、已知:在ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G。
求证:GF=GC.
证明:取BE的中点M,连接FM、CM
辅助线:已知中点与选取邻边中点的连线,形成中位线。
情感分析:通过前面例题的对比,很多学生会觉得连接两点就可以构成三角形的中位线,从而产生惯性思维,导致这题目解答不出,所以这方面可以通过这题进行归类辅助线的做法,已知中点与选取邻边中点的连线,形成中位线。
(十)总结:
三角形的中位线定义:连接三角形两边中点的线段叫做三角形的中位线
三角形的中位线定理
【用途】:三角形的中位线平行于三角形的第三边,且等于第三边的一半
教学反思:
本节课采用“问题—探究—发现—应用”的启发性教学模式,把大部分时间交给了学生去思考探究,让学生画出任意三角形的中位线去探究与第三边的关系,从而让学生动手动脑思考。而教师不是一位旁观者,要积极的作为引导者、合作者,组织者。整节课教师注意提高学生的逻辑证明能力,强调直观与抽象结合,以及逻辑思维推理能力的训练,让学生经历了数学的快乐之旅。
三角形的中位线 篇9
教学目标
1.理解三角形中位线的概念,掌握它的性质及初步应用.
2.通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力.
教学重点与难点
重点是三角形中位线的性质定理.
难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用.
教学过程 设计
一、联想,提出问题.
1.(投影)复习平行线等分线段定理及两个推论(图4-89).
(1)请同学叙述定理及推论的内容.
(2)用数学表态式叙述图4-89(c)中的结论.
已知在ΔABC中,D为AB中点,DE∥BC,则AE=EC.
2.逆向思维,探索新结论.
引导学生思考:在图4-90中,反过来,若D,E分别为AB,AC中点,DE与BC有什么位置和数量关系呢?
启发学生逆向类比猜想:DE∥BC(逆向联想),DE= BC(因为AD= AB,AE= AC,类比联想ΔADE的第三边DE与ΔABC的第三边也存在相同的倍数关系).
由此引出课题.
二、证明猜想,形成定理
1.定义三角形的中位线,强调它与三角形的中线的区别.
2.证明上述猜想成立,教师重点分析辅助线的作法的思考过程.
教师提示学生:所证结论即有平行又有数量关系,联想已有知识,可添加辅助线构造平行四边形,利用对平行且相等证明结论成立,或者用书上的同一法.教师引导学生发散思维后,还要注意比较,选择最简捷的证明方法.
3.板书一种证明过程.
4.将“猜想改成定理,引导学生用文字叙述出三角形中位线定理的具体内容.
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.
5.分析定理成立的条件、结论及作用.
条件:连结两边中点得到中位线.
结论有两个,即位置关系和数量关系,根据题目需要选用.
作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.
三、应用举例、变式练习
(投影)例1(直线给出图4-90的问题)根据图4-91中的条件,回答问题.
(1) 已知:如图4-91(a),D,E分别为AB和AC的中点DE=5.BC;
(2) 如图4-91(b),D,E,F分别为AB,AC,BC中点,AC=8,∠C=70°,求DF和∠EDF;
(3) 如图4-91(c),①它包含几个图4-90这样的基本图形?②哪些三角形全等?③有几个平行四边形?④若ΔDEF周长为10 cm,求ΔABC的周长.⑤若ΔABC的面积等于20cm2,求ΔDEF的面积.⑥AF与DE有何关系?怎样用语言叙述这结论?
分析:
(1) 可利用复合投影片实现三个图的叠加过程,以提高课堂效益并帮助学生建立分解基本图形的思想.
(2) 通过此题总结:三角形三和中位线围成的三角形的周长等于原三角形周长的一半,面积等于原三角形面积的14.这个过程可以无限进行下去,如图4-92.
(3) 从解题过程可以得到:三角形的一条中位线(DE)与第三边上的中线(AF)互相平分.
(板书)例2 (包含图4-90的问题)如图4-93,AD是ΔABC的高,M,N和E分别为AB,AC,BC的中点.求证:(1)四边形MNDE为等腰梯形;(2)∠MEN=∠MDN.
分析:
(1) 由条件分析,图中可分解出“AD是ΔABC的高”,“三角形的中位线是MN,ME,NE”,“直角三角形斜边上中线MD,ND” .想一想,这些基本图形都有什么性质?
(2) 从结论出发,要证四边形MEDN是等腰梯形,只需证MN∥DE,且MN≠DE及以下三种情况之一成立:①ME=ND;②MD=EN;③∠EMN=∠DNM.从而证得结论成立.
让学生口述,教师板书证明过程.
例3 构造图4-90问题.
(1) 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形;
(2)若已知四边形为特殊四边形呢?
已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94.求证:四边形EFGH是平行四边形.
分析:
(1)已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位线”的基本图形.
(2)让学生画图观察并思考此题的特殊情况,如图4-95,顺次连结各种特殊四边形中点得到什么图形?
投影显示:
四、师生共同小结
1.教师提问引起学生思考:
(1)这节课学习了哪些具体内容:
(2)用什么思维方法提出猜想的?
(3)应注意哪些概念之间的区别?
2.在学生回答的基础上,教师投影显示以下与三角形一边中点及线段倍分关系有关的基
本图形(如图4-96).
(1)注意三角形中线与中位线的区别,图4-96(a),(b).
(2)三角线的中位线的判定方法有两种:定义及判定定理,图4-96(b),(。).
(3)证明线段倍分关系的方法常有三种,图4-96(b),(d),.
3.先猜想后证明的研究问题方法;逆向思维,探究逆命题是否成立,由此经常得到一些好
的结论;添辅助线构造基本图形来使用性质的解题方法.
4.三角形的中位线有这样的性质,那么梯形有中位线吗?它有类似的性质吗?(为下节
课作思维上的准备)
五、作业
课本第180页第4题,第184页第5,7,8题,第185页B组第1题.
补充题:(构造三角形的中位线)
1.如图4-97,AD是上ABC的外角平分线,CD上AD于D.E是BC的中点.求证:(1)DE ∥/ AB:(2)DE = (AB+AC).
(提示:延长CD交BA延长线于F.)
2.如图 4-98,正方形 ABCD对角线交于点O,E是BO中点,连结”并延长交BC于F.求证:BF= CF.(提示:作OG∥EF交于BC于G.)
3.如图4-99,在四边形 ABCD中,AB=CD, E,F分别是AD,BC的中点,延长 BA和CD分别交FE的延长线于 G,H点.求证:∠BGF=∠CHF.(提示:连结 AC,取 AC中声、 M,连结EM,FM.)
课堂教学设计说明
本教学过程 设计需1课时完成.
1.本节课的设计,力求让学生通过逆向思维及类比联想自己实践“分析——猜想——证
明”的过程.变被动接受知识为主动应用已有知识,探索新知识,获得成功的喜悦.
2.在应用性质定理时,通过一组层次递进的变式题的训练,由直接给出定理的基本图形
到包含基本图形,学生分解图形后使用性质,再到通过添加辅助线构造基本图形来使用性质,
学生逐步学会运用性质来解决问题,他们的解题能力、思考问题的方法得到逐步提高.
教学目标
1.理解三角形中位线的概念,掌握它的性质及初步应用.
2.通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力.
教学重点与难点
重点是三角形中位线的性质定理.
难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用.
教学过程 设计
一、联想,提出问题.
1.(投影)复习平行线等分线段定理及两个推论(图4-89).
(1)请同学叙述定理及推论的内容.
(2)用数学表态式叙述图4-89(c)中的结论.
已知在ΔABC中,D为AB中点,DE∥BC,则AE=EC.
2.逆向思维,探索新结论.
引导学生思考:在图4-90中,反过来,若D,E分别为AB,AC中点,DE与BC有什么位置和数量关系呢?
启发学生逆向类比猜想:DE∥BC(逆向联想),DE= BC(因为AD= AB,AE= AC,类比联想ΔADE的第三边DE与ΔABC的第三边也存在相同的倍数关系).
由此引出课题.
二、证明猜想,形成定理
1.定义三角形的中位线,强调它与三角形的中线的区别.
2.证明上述猜想成立,教师重点分析辅助线的作法的思考过程.
教师提示学生:所证结论即有平行又有数量关系,联想已有知识,可添加辅助线构造平行四边形,利用对平行且相等证明结论成立,或者用书上的同一法.教师引导学生发散思维后,还要注意比较,选择最简捷的证明方法.
3.板书一种证明过程.
4.将“猜想改成定理,引导学生用文字叙述出三角形中位线定理的具体内容.
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.
5.分析定理成立的条件、结论及作用.
条件:连结两边中点得到中位线.
结论有两个,即位置关系和数量关系,根据题目需要选用.
作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.
三、应用举例、变式练习
(投影)例1(直线给出图4-90的问题)根据图4-91中的条件,回答问题.
(1) 已知:如图4-91(a),D,E分别为AB和AC的中点DE=5.BC;
(2) 如图4-91(b),D,E,F分别为AB,AC,BC中点,AC=8,∠C=70°,求DF和∠EDF;
(3) 如图4-91(c),①它包含几个图4-90这样的基本图形?②哪些三角形全等?③有几个平行四边形?④若ΔDEF周长为10 cm,求ΔABC的周长.⑤若ΔABC的面积等于20cm2,求ΔDEF的面积.⑥AF与DE有何关系?怎样用语言叙述这结论?
分析:
(1) 可利用复合投影片实现三个图的叠加过程,以提高课堂效益并帮助学生建立分解基本图形的思想.
(2) 通过此题总结:三角形三和中位线围成的三角形的周长等于原三角形周长的一半,面积等于原三角形面积的14.这个过程可以无限进行下去,如图4-92.
(3) 从解题过程可以得到:三角形的一条中位线(DE)与第三边上的中线(AF)互相平分.
(板书)例2 (包含图4-90的问题)如图4-93,AD是ΔABC的高,M,N和E分别为AB,AC,BC的中点.求证:(1)四边形MNDE为等腰梯形;(2)∠MEN=∠MDN.
分析:
(1) 由条件分析,图中可分解出“AD是ΔABC的高”,“三角形的中位线是MN,ME,NE”,“直角三角形斜边上中线MD,ND” .想一想,这些基本图形都有什么性质?
(2) 从结论出发,要证四边形MEDN是等腰梯形,只需证MN∥DE,且MN≠DE及以下三种情况之一成立:①ME=ND;②MD=EN;③∠EMN=∠DNM.从而证得结论成立.
让学生口述,教师板书证明过程.
例3 构造图4-90问题.
(1) 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形;
(2)若已知四边形为特殊四边形呢?
已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94.求证:四边形EFGH是平行四边形.
分析:
(1)已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位线”的基本图形.
(2)让学生画图观察并思考此题的特殊情况,如图4-95,顺次连结各种特殊四边形中点得到什么图形?
投影显示:
四、师生共同小结
1.教师提问引起学生思考:
(1)这节课学习了哪些具体内容:
(2)用什么思维方法提出猜想的?
(3)应注意哪些概念之间的区别?
2.在学生回答的基础上,教师投影显示以下与三角形一边中点及线段倍分关系有关的基
本图形(如图4-96).
(1)注意三角形中线与中位线的区别,图4-96(a),(b).
(2)三角线的中位线的判定方法有两种:定义及判定定理,图4-96(b),(。).
(3)证明线段倍分关系的方法常有三种,图4-96(b),(d),.
3.先猜想后证明的研究问题方法;逆向思维,探究逆命题是否成立,由此经常得到一些好
的结论;添辅助线构造基本图形来使用性质的解题方法.
4.三角形的中位线有这样的性质,那么梯形有中位线吗?它有类似的性质吗?(为下节
课作思维上的准备)
五、作业
课本第180页第4题,第184页第5,7,8题,第185页B组第1题.
补充题:(构造三角形的中位线)
1.如图4-97,AD是上ABC的外角平分线,CD上AD于D.E是BC的中点.求证:(1)DE ∥/ AB:(2)DE = (AB+AC).
(提示:延长CD交BA延长线于F.)
2.如图 4-98,正方形 ABCD对角线交于点O,E是BO中点,连结”并延长交BC于F.求证:BF= CF.(提示:作OG∥EF交于BC于G.)
3.如图4-99,在四边形 ABCD中,AB=CD, E,F分别是AD,BC的中点,延长 BA和CD分别交FE的延长线于 G,H点.求证:∠BGF=∠CHF.(提示:连结 AC,取 AC中声、 M,连结EM,FM.)
课堂教学设计说明
本教学过程 设计需1课时完成.
1.本节课的设计,力求让学生通过逆向思维及类比联想自己实践“分析——猜想——证
明”的过程.变被动接受知识为主动应用已有知识,探索新知识,获得成功的喜悦.
2.在应用性质定理时,通过一组层次递进的变式题的训练,由直接给出定理的基本图形
到包含基本图形,学生分解图形后使用性质,再到通过添加辅助线构造基本图形来使用性质,
学生逐步学会运用性质来解决问题,他们的解题能力、思考问题的方法得到逐步提高.
三角形的中位线 篇10
一、教学目标:
1.理解三角形中位线的概念,掌握它的性质.
2.能较熟练地应用三角形中位线性质进行有关的证明和计算.
3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.
4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.
二、重点、难点
1.重点:掌握和运用三角形中位线的性质.
2.难点:三角形中位线性质的证明(辅助线的添加方法).
3.难点的突破方法:
(1)本教材三角形中位线的内容是由一道例题从而引出其概念和性质的,新教材与老教材在这个知识的讲解顺序安排上是不同的,它这种安排是要降低难度,但由于学生在前面的学习中,添加辅助线的练习很少,因此无论讲解顺序怎么安排,证明三角形中位线的性质(例1)时,题中辅助线的添加都是一大难点,因此教师一定要重点分析辅助线的'作法的思考过程.让学生理解:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可添加辅助线构造平行四边形,利用平行四边形的对边平行且相等来证明结论成立的思路与方法.
(2)强调三角形的中位线与中线的区别:
中位线:中点与中点的连线。中线:顶点与对边中点的连线.
(3)要把三角形中位线性质的特点、条件、结论及作用交代清楚:
特点:在同一个题设下,有两个结论.一个结论表明位置关系,另一个结论表明数量关系。
条件(题设):连接两边中点得到中位线。
结论:有两个,一个表明中位线与第三边的位置关系,另一个表明中位线与第三边的数量关系(在应用时,可根据需要选用其中的结论)。
作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.
(4)可通过题组练习,让学生掌握其性质.
三、课堂引入
1.平行四边形的性质。平行四边形的判定。它们之间有什么联系?
2.你能说说平行四边形性质与判定的用途吗?
(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等。二是判定一个四边形是平行四边形,从而判定直线平行等。三是先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题.)
3.创设情境
实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?
定义:连接三角形两边中点的线段叫做三角形的中位线.
三角形的中位线 篇11
【学习目标】: xx中学 李
1. 理解三角形中位线的概念,掌握它的性质.
2. 能较熟练地应用三角形中位线性质进行有关的证明和计算.
3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.
4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.
【学习重点、难点】
1.重点:掌握和运用三角形中位线的性质.
2.难点:三角形中位线性质的证明(辅助线的添加方法).
(1)三角形的中位线与中线的区别
(2)三角形中位线性质的应用
一、【课前预习】
1.预习p30
2.预习检测
(1)三角形中位线: .
(2)三角形中位线定理: .
定理符号语言的表达:
如图:在△abc中
∵d、e分别是ab、ac的中点
∴
(3)△abc中,d、e、f分别是ab、ac、bc的中点,若ef=5cm,则ab= cm;若bc=9cm,则de= cm;
(4)一个三角形的周长是15cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是 cm.
二、【课堂导学】
【思考】:
(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?
(2)三角形的中位线与第三边有怎样的关系?
三角形中位线的性质定理:
已知: 如图,点d、e、分别为△abc边ab、ac的中点
求证:de∥bc且de= bc.
三、【精讲点拨】
活动1、如图,△abc中,d、e、f分别是bc、ab、ac的中点。
试判断四边形aedf的形状并说明理由。
活动2、如图:在四边形abcd中,点e、f、g分别是ad、ab、cd的中点。
思考:
1、ef是哪个三角形的中位线?eg是哪个三角形的中位线?
2、当ac=bd时,请判断△efg的形状。
四、【课堂检测】
1.如图,d、e分别为△abc的边ab、bc的中点,若ac=12 ,∠a=450,则de= ,∠edb=
2.如图,在四边形abcd中,p是对角线bd的中点,e、f分别是ab、cd的中点,ad=bc。若∠pef=180,则∠pfe= 度;
3.一个三角形三条中位线的长分别是 , , ,则这个三角形的周长为
4.如图,点o为△abc内一点,d、e、f、g分别为ac、ab、ob、oc的中点。求证:四边形defg为平行四边形。
检测
反馈
五、【开放题】
如图,a、b两点被池塘隔开, 在不可直接测量ab的情况下,你能运用你所学习的数学知识测量出a、b两点的距离吗?
三角形的中位线 篇12
教学目标
1.理解三角形中位线的概念,掌握它的性质及初步应用.
2.通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力.
教学重点与难点
重点是三角形中位线的性质定理.
难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用.
教学过程 设计
一、联想,提出问题.
1.(投影)复习平行线等分线段定理及两个推论(图4-89).
(1)请同学叙述定理及推论的内容.
(2)用数学表态式叙述图4-89(c)中的结论.
已知在ΔABC中,D为AB中点,DE∥BC,则AE=EC.
2.逆向思维,探索新结论.
引导学生思考:在图4-90中,反过来,若D,E分别为AB,AC中点,DE与BC有什么位置和数量关系呢?
启发学生逆向类比猜想:DE∥BC(逆向联想),DE= BC(因为AD= AB,AE= AC,类比联想ΔADE的第三边DE与ΔABC的第三边也存在相同的倍数关系).
由此引出课题.
二、证明猜想,形成定理
1.定义三角形的中位线,强调它与三角形的中线的区别.
2.证明上述猜想成立,教师重点分析辅助线的作法的思考过程.
教师提示学生:所证结论即有平行又有数量关系,联想已有知识,可添加辅助线构造平行四边形,利用对平行且相等证明结论成立,或者用书上的同一法.教师引导学生发散思维后,还要注意比较,选择最简捷的证明方法.
3.板书一种证明过程.
4.将“猜想改成定理,引导学生用文字叙述出三角形中位线定理的具体内容.
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.
5.分析定理成立的条件、结论及作用.
条件:连结两边中点得到中位线.
结论有两个,即位置关系和数量关系,根据题目需要选用.
作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.
三、应用举例、变式练习
(投影)例1(直线给出图4-90的问题)根据图4-91中的条件,回答问题.
(1) 已知:如图4-91(a),D,E分别为AB和AC的中点DE=5.BC;
(2) 如图4-91(b),D,E,F分别为AB,AC,BC中点,AC=8,∠C=70°,求DF和∠EDF;
(3) 如图4-91(c),①它包含几个图4-90这样的基本图形?②哪些三角形全等?③有几个平行四边形?④若ΔDEF周长为10 cm,求ΔABC的周长.⑤若ΔABC的面积等于20cm2,求ΔDEF的面积.⑥AF与DE有何关系?怎样用语言叙述这结论?
分析:
(1) 可利用复合投影片实现三个图的叠加过程,以提高课堂效益并帮助学生建立分解基本图形的思想.
(2) 通过此题总结:三角形三和中位线围成的三角形的周长等于原三角形周长的一半,面积等于原三角形面积的14.这个过程可以无限进行下去,如图4-92.
(3) 从解题过程可以得到:三角形的一条中位线(DE)与第三边上的中线(AF)互相平分.
(板书)例2 (包含图4-90的问题)如图4-93,AD是ΔABC的高,M,N和E分别为AB,AC,BC的中点.求证:(1)四边形MNDE为等腰梯形;(2)∠MEN=∠MDN.
分析:
(1) 由条件分析,图中可分解出“AD是ΔABC的高”,“三角形的中位线是MN,ME,NE”,“直角三角形斜边上中线MD,ND” .想一想,这些基本图形都有什么性质?
(2) 从结论出发,要证四边形MEDN是等腰梯形,只需证MN∥DE,且MN≠DE及以下三种情况之一成立:①ME=ND;②MD=EN;③∠EMN=∠DNM.从而证得结论成立.
让学生口述,教师板书证明过程.
例3 构造图4-90问题.
(1) 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形;
(2)若已知四边形为特殊四边形呢?
已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94.求证:四边形EFGH是平行四边形.
分析:
(1)已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位线”的基本图形.
(2)让学生画图观察并思考此题的特殊情况,如图4-95,顺次连结各种特殊四边形中点得到什么图形?
投影显示:
四、师生共同小结
1.教师提问引起学生思考:
(1)这节课学习了哪些具体内容:
(2)用什么思维方法提出猜想的?
(3)应注意哪些概念之间的区别?
2.在学生回答的基础上,教师投影显示以下与三角形一边中点及线段倍分关系有关的基
本图形(如图4-96).
(1)注意三角形中线与中位线的区别,图4-96(a),(b).
(2)三角线的中位线的判定方法有两种:定义及判定定理,图4-96(b),(。).
(3)证明线段倍分关系的方法常有三种,图4-96(b),(d),.
3.先猜想后证明的研究问题方法;逆向思维,探究逆命题是否成立,由此经常得到一些好
的结论;添辅助线构造基本图形来使用性质的解题方法.
4.三角形的中位线有这样的性质,那么梯形有中位线吗?它有类似的性质吗?(为下节
课作思维上的准备)
五、作业
课本第180页第4题,第184页第5,7,8题,第185页B组第1题.
补充题:(构造三角形的中位线)
1.如图4-97,AD是上ABC的外角平分线,CD上AD于D.E是BC的中点.求证:(1)DE ∥/ AB:(2)DE = (AB+AC).
(提示:延长CD交BA延长线于F.)
2.如图 4-98,正方形 ABCD对角线交于点O,E是BO中点,连结”并延长交BC于F.求证:BF= CF.(提示:作OG∥EF交于BC于G.)
3.如图4-99,在四边形 ABCD中,AB=CD, E,F分别是AD,BC的中点,延长 BA和CD分别交FE的延长线于 G,H点.求证:∠BGF=∠CHF.(提示:连结 AC,取 AC中声、 M,连结EM,FM.)
课堂教学设计说明
本教学过程 设计需1课时完成.
1.本节课的设计,力求让学生通过逆向思维及类比联想自己实践“分析——猜想——证
明”的过程.变被动接受知识为主动应用已有知识,探索新知识,获得成功的喜悦.
2.在应用性质定理时,通过一组层次递进的变式题的训练,由直接给出定理的基本图形
到包含基本图形,学生分解图形后使用性质,再到通过添加辅助线构造基本图形来使用性质,
学生逐步学会运用性质来解决问题,他们的解题能力、思考问题的方法得到逐步提高.