初二数学精华(精选2篇)
初二数学精华 篇1
一元一次不等式和一元一次不等式组
不等式和它的基本性质
考点扫描:
1.了解不等式的意义。
2.掌握不等式的三条基本性质,并会运用这些基本性质将不等式变形。
名师精讲:
1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。
2.不等式的基本性质
(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。用式子表示:如果a>b,那a+c>b+c(或a–c>b–c)
(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变。用式子表示:如果a>b,且c>0,那么ac>bc(或>)
(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变。用式子表示:如果a>b,且c<0,那么ac<bc(或<)
3.不等式的基本性质是对不等式变形的重要依据。不等式的性质与等式的性质类似,但等式的结论是“仍是等式”,而不等式的结论则是“不等号方向不变或改变”。在运用性质(2)和性质(3)时,要特别注意不等式的两边乘以或除以同一个数,首先认清这个数的性质符号,从而确定不等号的方向是否改变。
中考典例:
1.(天津市)若a>b,则下列不等式一定成立的是( )
A、<1 B、>1 C、–a>–b D、a–b>0
考点:不等式的性质
评析:不等式的性质是:不等式两边同时加上或减去同一个数(或整式)不等号不变;不等式两边同时乘以或除以正数不等号不变;不等式两边同时乘以或除以一个负数,不等号的方向改变。因此a>b,所以a、b均可为负数也可为正数,所以A、B选项都不对,C选项不等号的方向没改变,所以也不对,因a>b,(a、b代表的是任意数)所以根据不等式的性质运用排除法,可知正确选项为D。
真题专练
1.(北京海淀区)比较大小:当实数a<0时,1+a 1–a(填“<”或“>”)
2.(广东省)已知实数a、b满足ab>0,a+b<0,则满足条件的实数a、b可分别为 (写出满足条件的两个数即可)。
3.(北京西城区)如果a>b,那么下列结论中错误的是( )
A、a–3>b–3 B、3a>3b
C、> D、–a>–b
4.(北京海淀区)若a–b<0,则下列各式中一定正确的是( )
A、a>b B、ab>0 C、 D、–a>–b
5.(天津市)若a>b,且c为实数则下列各式正确的是( )
A、ac>bc B、ac<bc C、ac2>bc2 D、ac2≥bc2
6.(荆门市)已知a、b、c是有理数,且a>b>c,那么下列式子正确的是( )
A、a+b>b+c B、a–b>b–c C、ab>bc D、
答案:
5、D(提示:按c>0、c=0、c<0三种情况讨论)
6、A(提示:a、b、c是任意有理数,所以C、D不对,当C是负数或0时B不对,因a>c故a+b>b+c)
不等式的解集
考点扫描:
1.了解不等式的解和解集的概念。
2.会在数轴上表示不等式的解集。
名师精讲:
1.不等式的解:能使不等式成立的未知数的值,叫做这个不等式的解。一般地,一个一元一次不等式有无数多个解。
2.不等式的解集:一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集。
“不等式的解”与“不等式的解集”是两个不同的概念,前者是指能使不等式成立的每一个未知数的值,后者是指能使不等式成立的所有未知数的值的集合。但二者之间也有着密切联系,即所有解组成了解集,解集中包括了每一个解。
求不等式的解集的过程,叫做解不等式。
3.不等式解集的表示方法。
(1)用不等式表示:如5x>10的解集是x>2,它的解集仍是一个不等式,这种表示法简单明了,容易知道哪些数不是原不等式的解。
(2)用数轴表示:它的优点是数形结合、直观形象,尤其是在解较复杂的不等式或解不等式组时,易于找到正确的答案。在数轴上表示不等式的解集时,要注意:当解集包括端点时,在端点处画实心圆圈,否则,画空心圆圈。
中考典例:
(龙岩市、宁德市)不等式2x+10>3的解集是 。
考点:不等式的解集
评析:不等式的解集是使不等式成立的所有未知数的值组成的集合。该题可用不等式的性质两边同时减10,然后两边再除以2,求得解集为x>。
真题专练
1.(石家庄市)不等式–6x>4的解集是( )
A、x> B、x< C、x> D、x<
2.(宜昌市)如果不等式(a–1)x>a–1的解集是x<1,则a的取值范围是( )
3.(徐州市)不等式5x–4<6x的解集是 。
4.(西安市)若代数式3x+4的值不大于0,则x的取值范围是( )
A、x< B、x≥ C、x≤- D、x<–
答案:
2、a<1(提示:因为不等号的方向改变了,所以a–1<0,即a<1);
3、x>–4;
4、C(提示:3x+4的值不大于0,即得不等式3x+4≤0)
初二数学精华 篇2
一元一次不等式(组)(一)
一、全章教学内容及要求
1、理解不等式的概念和基本性质
2、会解一元一次不等式,并能在数轴上表示不等式的解集
3、会解一元一次不等式组,并能在数轴上表示不等式组的解集。
二、技能要求
1、会在数轴上表示不等式的解集。
2、会运用不等式的基本性质(或不等式的同解原理)解一元一次不等式。
3、掌握一元一次不等式组的解法,会运用数轴确定不等式组的解集。
三、重要的数学思想:
1、通过一元一次不等式解法的学习,领会转化的数学思想。
2、通过在数轴上表示一元一次不等式的解集与运用数轴确定一元一次不等式组的解集,进一步领会数形结合的思想。
四、主要数学能力
1、通过运用不等式基本性质对不等式进行变形训练,培养逻辑思维能力。
2、通过一元一次不等式解法的归纳及一元一次方程解法的类比,培养思维能力。
3、在一元一次不等式,一元一次不等式组解法的技能训练基础上,通过观察、分析、灵活运用不等式的基本性质,寻求合理、简捷的解法,培养运算能力。
五、类比思想:
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。这种数学思想通常称为“类比”,它体现了“不同事物之间存在内部联系”的唯物辩证观点,是发现数学真理和解题方法的重要手段之一,在数学中有着广泛的运用。
在本章中,类比思想的突出运用有:
1、不等式与等式的性质类比。
对于等式(例如a=b)的性质,我们比较熟悉。不等式(例如a>b或a2=0,求m为何值时y为正数。
分析:目前我们学习过的两个非负数问题,一个是绝对值为非负数,另一个是完全平方数是非负数。由非负数的概念可知,两个非负数的和等于0,则这两个非负数只能为零。由这个性质此题可转化为方程组来解。由此求出y的表达式再解关于m的不等式。
解:∵ |3x-6|+(2x-y-m)2=0,
∴ ∴
解方程组得
要使y为正数,即4-m>0, ∴ m<4.
∴ 当m<4时,y为正数。
注意:要明确“大于”、“小于”、“不大于”、“不小于”、“不超过”、“至多”、“至少”、“非负数”、“正数”、“负数”、“负整数”……这些描述不等关系的语言所对应的不等号各是什么。求带有附加条件的不等式时需要先求这个不等式的所有的解,即这个不等式的解集,然后再从中筛选出符合要求的解。
七、字母系数的不等式:
例:解关于x的不等式3(a+1)x+3a≥2ax+3
分析:由于x是未知数,所以应把a看作已知数,又由于a可以是任意有理数,所以在应用同解原理时,要区别情况,进行分类讨论。
解:移项,得3(a+1)x-2ax≥3-3a
合并同类项: (a+3)x≥3-3a
(1)当a+3>0,即a>-3时,x≥,
(2)当a+3=0,即a=-3时,0x≥12,不等式无解。
(3)当a+3<0,即a<-3时,x≤。
注意:在处理字母系数的不等式时,首先要弄清哪一个字母是未知数,而把其他字母看作已知数,在运用同解原理把未知数的系数化为1时,应作合理的分类,逐一讨论,例题中只有分为a+3>0, a+3=0, a+3<0, 三种情况进行研究,才有完整地解出不等式,这种处理问题的方法叫做“分类讨论”。
八、有关大小比较的问题
例1.根据给定条件,分别求出a的取值范围。
(1)若a2>a,则a的取值范围是____________;
(2)若a>, 则a的取值范围是____________。
解:(1)∵ a2>a,
∴ a2-a>0, 即a(a-1)>0,
∴ 或
解得a>1或a<0。
答:a的取值范围是a<0或a>1。
(2)∵ a>,∴ a->0, 即>0.
∴ 或
或
解得a>1或-1
答:a的取值范围是-11.
例2.(1)比较下列各组数的大小,找规律,提出你的猜想:
______; _______; ______;
______; _______; _____.
从上面的各式发现:一个正分数的分子和分母_____________,所得分数的值比原分数的值要_________。
猜想:设a>b>0, m>0, 则_______。
(2)试证明你的猜想:
分析:1.易知:前面的各个空都填 “< ”.
一个正分数的分子和分母都加上同一个正数,所得分数的值比原分数的值要大。
2.欲证<,只要证-<0.
即证 <0,
即证 <0,
证明:∵ a>b>0, b-a<0,
又∵ m>0, ∴ m(b-a)<0,
∵ -=
==<0,
∴ <。
上面这个不等式有很多有意义的应用。
例如,建筑学规定,民用住宅的窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比值应不小于10%,并且这个比值越大,住宅的采光条件越好。若同时增加相等的窗户面积和地板面积,住宅的采光条件变好了。
设窗户面积为a,地板面积为b,若同时增加相等的窗户面积和地板面积m,由<可知,住宅的采光条件变好了。