首页数学教案八年级数学教案第三册平均数(通用2篇)

第三册平均数(通用2篇)


第三册平均数(通用2篇)

第三册平均数 篇1

  教学目标 :

  1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.

  2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力.

  教学重点:会求一组数据的算术平均数和加权平均数.

  教学难点 :体会平均数在不同情境中的应用.

  教学方法:引导-讨论-交流.

  教学手段:多媒体

  教学过程 :

  创设情景,引入新课(出示篮球比赛的一些画面)

  在篮球比赛中,队员的身高是反映球队实力的一个重要因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?能因为甲队队员的最高身高高于乙队队员的最高身高,就说甲队队员比乙队队员更为高大吗?

  上面两支球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?

  活动1:前后桌四人交流.

  找同学回答后,给出算术平均数的定义.

  一般地,对于n个数x1,x2,…,xn我们把

  叫做这个n数的算术平均数,简称平均数,记为 .读作“x拔”.

  活动2:请同学们结合图表,自己用计算器算出各球队的平均身高,和平均年龄,看哪一个球队的平均身高高?哪一个球队的平均年龄小?

  想一想:

  小明是这样计算东方大鲨鱼队的平均年龄的:

  年龄/岁 16 18 21 23 24 26 29 34

  相应队员数 1 2 4 1 3 1 2 1

  平均年龄=(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷(1+2+4+1+3+1+2+1)≈23.3(岁)

  你能说说小明这样做的道理吗?找同学回答.

  巩固练习一:

  1. 某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童.每人捐款金额如下:(单位:元)

  10,12,13.5,21,40.8,19.5,20.8,25,16,30.

  这10名同学平均捐款 元.(课本P216随堂练习 1)

  2.一名射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,平均每次射中 环(精确到0.1)

  3.小明上学期期末语文、数学、英语三科平均分为92分,她记得语文得了88分,英语得了95分,但她把数学成绩忘记了,你能告诉她应是以下哪个分数吗?

  A 93分 B 95分 C 92.5分 D 94分

  例1某广告公司欲聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:

  测试项目 测试成绩

  A B C

  创新 72; 85; 67

  综合知识 50; 74; 70

  语言 88; 45; 67

  (1)如果根据三项测试的平均成绩确定录用人选,那么誰将被录用?

  (2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时誰将被录用?

  解:(1)A的平均成绩为 (分).

  B的平均成绩为 (分).

  C的平均成绩为 (分).

  因此候选人A将被录用.

  (2)根据题意,3人的测试成绩如下:

  A的测试成绩为 (分)

  B的测试成绩为 (分)

  C的测试成绩为 (分)

  因此候选人B将被录用.

  思考:(1)(2)的结果不一样说明了什么?

  实际问题中,一组数据里的各个数据的“重要程度”未必相同.因此,在计算这组数据的平均数时,往往给每个数据一个“权”.如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称

  为A的三项测试成绩的加权平均数.

  巩固练习二:

  1. 某校规定学生的体育成绩由三部分组成:早锻炼及课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述成绩依次是92分、80分、84分,则小颖这学期的体育成绩是多少?

  变形训练:(小组交流)

  1.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克混要一起,则售价应定为每千克 元;

  2.某班环保小组的六名同学记录了自己家10月分的用水量,结果如下:(单位:吨):17,18,20,16.5,18,18.5.如果该班有45名同学,那么根据提供的数据估计10月份全班同学各家总共用水的数量约为 .

  小结:先由学生总结,教师再补充.通过本节的学习,我们掌握了:1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题.

  布置书面作业 :课本P216习题8.1 1、2

  课外作业 :(两题任选一题)

  1. 到校医那里收集本班同学左眼视力检查结果,计算本班同学左眼视力的平均数.

  2. 请设计一个利用“加权平均数”方法来求平均数的应用题,再将其“权”作适当改变,观察平均值的变化.观察“权”的变化对结果的影响.

  板书设计 

  1.平均数

  算术平均数:

  对于n个数x1,x2,…xn我们把

  叫做这个n数的算术平均数,简称平均数,记为 .

  读作“x拔”

  例1解:(1)A的平均成绩为

  B的平均成绩为 .

  C的平均成绩为 .

  因此候选人A将被录用 (2)根据题意,3人的测试成绩如下:

  A的测试成绩为 (分)

  B的测试成绩为 (分)

  C的测试成绩为 (分)

  因此候选人B将被录用.

  加权平均数:称

  为A的三项测试成绩的加权平均数.

第三册平均数 篇2

  (使用教材:义务教育课程标准试验教科书《数学》(华师大版)七年级下册第10章第2节,第97~104页)

  一.            教材分析

  1、教材的地位和作用

  在信息社会“数字”社会里,常常需要在不确定的情况下,根据大量纷繁杂芜的数据做出一个合理的决策,而统计正是通过对数据的收集、整理和分析,为人们更好地制定决策提供依据及建议。平均数,众数,中位数是描述一组数据的集中趋势的3个统计特征量,是帮助学生学会用数据说话的基本概念。本节内容是继平均数学习之后的后续内容,既是对前

  面所学知识的深化与拓展,又是联系现实生活培养学生应用数学意识和创新能力的良好素材。

  2、课时安排和说明

  参照新教材教师用书建议:“10.2平均数、中位数和众数”这一节准备安排三个课时,第一课时主要承上启下地回顾探索平均数的一些性质及简单应用。第二课时探索得到众数和中位数的概念,并会正确计算众数和中位数,了解平均数、众数和中位数的各自适用范围。 第三课时是练习实践课,目的是巩固和深化本节知识及会用计算器计算平均数,用计算机计算平均数、众数和中位数。本次说课内容为第二课时。

  3、教学重点和难点

  教学重点:众数和中位数两概念的形成过程及两概念的简单运用。

  教学难点 :利用收集的数据整理分析,对刚接触统计不久的学生来说,他们原有的认知结构中尚缺乏这方面的知识经验,因此,对统计数据从多角度进行全面分析,使学生形成一定的统计观念(即数据感)是教学难点 。

  二.学情分析

  认知分析:学生已初步了解统计的意义,理解平均数的含义及会计算平均数,这两者形成了学生思维的“最近发展区”。

  能力分析:学生已初步具备一定的归纳、猜想能力,但在数学的应用意识与应用能力方面尚需进一步培养。

  情感分析:多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,尚需通过营造一定的学习氛围,来加以带动。

  基于以上分析,在学法上,引导学生采用自主探索与互相协作相结合的学习方式,尽量让每一个学生都能参与研究,并最终学会学习。

  三.教学目标 

  根据教材分析和学生的认知特点,本节课设置的教学目标 为:

  知识目标:理解众数和中位数的含义,会正确计算众数和中位数。

  能力目标:进一步发展学生类比、归纳、猜想等合情推理能力;让学生接触并解决一些现实生活中的问题,逐步培养学生的应用能力和创新意识。

  情感目标:通过各种真实的,贴近学生生活的素材和适当的问题情境,激发学生学习数学的热情和兴趣;在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。

  四.教学方法

  根据本节课的教学内容和建构主义教学理论,从发展学生认识问题、探索问题、研究问题的能力角度考虑,准备采用“以问题为中心”的讨论发观法:即课堂上,教师或学生提出适当的数学问题,通过学生与学生(或教师)之间相互讨论,相互学习,在问题解决过程中发现概念的产生过程,思想方法的概括过程从而逐步建立完善的认知结构。

  具体说本节课由五个基本环节组成:创设情境,提出问题­­­­--合作交流,探索问题­­­--理性概括,构建新知――实践应用,鼓励创新――归纳小结,反思提高。

  五.教学过程 

  1.  创设情境,提出问题

  (1)    创设情境(用多媒体课件演示

  某小厂欲招工人一名,小张应征而来,经理告诉他:“我们这里报酬不错,平均工资水平是每周300元。”小张工作几天后,找到经理说:“你骗我,多数工人的工资水平没有超过每周200元,”这时,工会主席过来说:“小张,经理说得没错,其实我们厂有一半人达到或超过中等工资水平即每周250元,不止每周200元的!不信,看看这张工资表。”看后,小张感慨:“难道是我错了?”

  人员

  经理

  领工

  工种一

  工种二

  学徒

  合计

  工资x(元)

  2000

  260

  250

  200

  100

  /

  人数f(人)

  1

  5

  6

  10

  1

  23

  f.x(元)

  2000

  1300

  1500

  2000

  100

  6900

  (2)  问题:真是公说公有理,婆说婆有理,平均数真能客观反映工人的真实工资水平吗?

  基于学生原有认知结构的问题情境,更诱发了学生的认知冲突,从而引发学生提出问题:究竟什么数据能反映工人的真实工资水平?

  2.    合作交流,探索问题

  在导出以上问题后,分三人小组开小型辩论会(三人分别充当经理、小张、工会主席三个角色展开辩论)。各小组再拿出最能反映工人真实工资水平的数据全班交流。

  学生会用人数最多的工种的工资200元或中等水平工资250元来回答,从而引出:今天要学习的内容----众数和中位数。

  通过学生合作交流,相互完善,在自主探索中发现概念的形成过程。让学生体验生活中的角色,认识到研究数据的必要性。

  3.理性概括,构建新知

  (!)启发建构

  在上述数据中象“200”这样的数我们就叫做这组数据的众数,象“250” 这样的数我们就叫做这组数据的中位数,它们与其它几个数相比是不同的,有何不同?我们能用自己的语言来描述它们吗?在学生描述的基础上为加深印象,教师可适时补充说明:“众数”中“众”即多,也就是某个数据在一组数据中出现次数最多;而“中位数”中“中位”是指位置居于中间,即某个数据在按照大小顺序排列的一组数据中,位置处于最中间。形象语言的描述更易新知的构建。

  (2)完善建构

  练习:

  ①    在一次英语考试中,11名同学得分如下:80  70  100  60  80  70  90  50  80  70  90 请指出这次英语考试中,11名同学得分的中位数和众数。

  ②      10名工人某天生产同一零件,生产的件数是:13  15  10  14  19  17  16  14  12

  你能说出这一天10名工人所生产零件数的众数和中位数吗?

  学生独立思考后讨论回答。

  结合学生回答的实际情况,对练习追问:a、能说出1 2 3 4 5 6 的众数吗?b、如何求一组数据的中位数?c、在一组数据中平均数,众数和中位数会都是同一个数吗?d、实话实说,对平均数、众数和中位数知道多少?谈谈它们的区别和共同特点.

  归纳探索结果:

  众数、中位数都是用来描述一组数据的集中趋势。众数是一组数据中出现次数最多数据;一组数据中的众数可能不止一个,也可能没有。中位数是指:将一组数据按大小依次排列,处在最中间位置的一个数据(或最中间两个数的平均数),一组数据中的中位数是惟一的。

  这一环节,由浅入深设置问题链,使学生思维分层递进,目的是突出本节重点;通过追问层层引导,又把学生的探索逐步引向最近发展区,启发学生运用类比、归纳、猜想等思维方法探究问题,揭示概念的实质,不断完善新的知识结构。同时体验了知识的形成过程和发现的快乐,继而转化为进一步探索的内驱力。

  4.实践应用,鼓励创新

  (!)请你当厂长

  某鞋厂生产销售了一批女鞋30双,其中各种尺码的销售量如下表所示:

  鞋的尺寸(cm)

  22

  22

  23

  23

  24

  24

  25

  销售量(双)

  1

  2

  5

  11

  7

  3

  1

  ①       计算30双女鞋尺寸的平均数、中位数、众数

  ②       从实际出发,请回答①中三种统计特征量对指导本厂的生产是否有实际意义?

  问题①在同一具体问题中分别求平均数,中位数,众数,目的是为了比较三个量在描述一组数据集中趋势时的不同角度,有助于了解三个概念之间的联系与区别。问题②具有很强的生活色彩,体现了众数,中位数在日常生产上的应用。

  (2)请你评判

  甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入的个数经统计计算后得到下表:

  班级

  参加人数

  中位数

  平均字数

  甲

  55

  149

  135

  乙

  55

  151

  135

  请你评判两班的学生成绩的平均水平、优秀率(每分钟输入汉字数≥150个为优秀)的高低。

  由已知中位数估计"中间"位置,培养学生的逆向思维,同时也是从不同角度理解概念。

  (3)请你参政:

  某市实行中考改革,需要根据该市中学生体能的实际状况,重新制定中考体育标准为此抽取了50名初中毕业的女学生进行一分钟仰卧起坐次数测试,测试情况见如下统计图:

  (图中右边的人数是指取得对应左边次数的女生人数)

  请你运用所学知识对以上数据进行分析,并思考:该市中考女生一分钟仰卧起坐项目测试的合格标准应定为多少次较为合适?请简要说明理由。

  由学生独立思考后,全班交流。在学生解答的基础上追问:

  追问:据上述你认为合格的标准,试估计该市中考女生一分钟仰卧起坐项目测试的合格率是多少?

  让学生会用数据多角度进行全面分析,制定科学决策,在用数学中学会创新.

  这一环节通过对实践问题的分析解决,突破教学难点 ,强化学生对知识的理解,促进知识的迁移、深化、巩固,进一步完善知识结构;鼓励学生用数学的眼光分析实际问题,增强用数学意识。

  引例的解决:

  略解:经理的工资数据与其它数据大小悬殊,用平均数不能反映工人的真实工资水平。这时用众数(200元)或中位数(250元)来表示工人的真实工资水平比较合适。

  追问学生:如果你找工作,你会怎样去了解工作报酬?

  由于前面已将问题的难点进行分解突破,问题的解决水到渠成。同时也使学生更深层地意识到:要学会用数据说话,科学地分析身边的事例,以免上当受骗。

  5.              归纳小结,反思提

  教师采用谈话法与学生小结交流:

  (1)   列表对比

  平均数

  众数

  中位数

  概念

  注意点

  (2)在生活中可用平均数、众数和中位数这三个特征数来描述一组数据的集中趋势,它们各有不同的侧重点,需联系实际选择。

  作业 :

  (1)巩固型作业 :课本P101,练习:1 2

  (2)实践操作型作业 :(一周后交)

  每分钟的心跳次数也称为心率,请你们分组抽样调查初一年级50名同学的心率,并思考若你是医务室的医生,请你谈谈初一年级学生的心率情况,据此数据向校长提出一些合理建议。

  布置一短一长作业 ,巩固本节和上节知识,也为下节课学习作好铺垫,同时也是为课本P125的课题学习“心率与年龄”的开展打好扎实基础;既让学生了解自身,同时引导学生参与研究性学习,促进学生的全面发展。

  六、设计说明:

  1.板书设计 

  投影屏幕

  众数和中位数

  1.  归纳探索结果         3.实践应用

  ............. ...........

  ............. ...........

  2.练习....... ...........

  ............. ...........

  2.时间安排

  课题引入约5分钟,概念探索约18分钟,实践应用约17分钟,小结与作业 约5分钟.(注:一节课45分钟)

  3. 教学特色

  1)以问题作为教学主线,在趣味性情境中发现问题,在层层递进的问题链中,展开探索,在实践应用性问题中感悟数学的思维与方法,培养统计观念.

  2)以课堂作为教学的辐射源,通过教师、学生、多媒体多点辐射,带动和提高所有学生的学习积极性与主动性。

  个人简介:徐小路,男,1971年生,浙江杭州人,杭州市长征中学一级教师,硕士

  通讯地址:310005  浙江省杭州市长征中学     电话:0571-88084357-8034