首页数学教案八年级数学教案数学教案-比例线段(通用2篇)

数学教案-比例线段(通用2篇)


数学教案-比例线段(通用2篇)

数学教案-比例线段 篇1

  教学建议

  知识结构

  重难点分析

  本节的重点是线段的比和比例线段的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系――相似三角形,这些内容的研究都离不开线段的比和比例性质的应用.

  本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且容易混淆,作题不知应用哪条性质,不知如何应用是常有的.

  教法建议

  1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,容易产生兴趣,增加学生学习的主动性

  2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想

  3.这一节概念比较多,也比较容易混淆,教学中可设计不同层次的题组来进行巩固,特别是要举一些反例,同时要注意对相近概念的比较

  4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的兴趣和参与感

  5.比例性质由于变式多,理解和应用上容易出现错误,教学时可利用等式性质和分式性质来处理

  教学设计示例1

  (第1课时)

  一、教学目标 

  1.理解线段的比的概念.

  2.通过与小学知识到比较,初步培养学生“类比”的数学思想.

  3.通过线段的比的有关计算,培养学习的计算能力.

  4.通过“引言”及“例1”的教学,激发学生学习兴趣,对学生进行热爱爱国主义教育.

  二、教学设计

  先学后做,启发引导

  三、重点及难点

  1.教学重点  两条线段比的概念.

  2.教学难点   正确理解两条线段的比及应用.

  四、课时安排

  1课时

  五、教具学具准备

  股影仪、胶片、常用画图工具

  六、教学步骤 

  【复习提问】

  找学生回答小学学过的比、比的前项和后项的概念.

  (两个数相除又叫做两数的比,记作 或a:b,其中a叫比的前项,b叫比的后项)

  【讲解新课】

  把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b).再求出长与宽的比.然后找三名同学把结果写在黑板上.如:

  等.

  可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比.

  一般地:若a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是 ,或写成 ,和数的比一样,a叫比的前项,b叫比的后项.

  关于两条线段比的概念,教学中要揭示它的实质,即 表示a是b的k倍,这是学生已有的知识,较易理解,也容易使学生注意到求比时,长度单位要一致.另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注意尺度.

  就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注意的问题,归纳出:

  (l)两条线段的比就是它们的长度的比.

  (2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致.

  (3)两条线段的比值总是正数.(并不都是正数)

  (4)除了a=b之外, . 与 互为倒数.

  例1  见教材P202.

  讲解完例1后:

  (l)提问学生AB是 的多少倍, 是AB的多少倍,以加深学生对线段比的逾义的理解.

  (2)给出:比例尺= ,就例1的图上,若图距是8cm的两地,实际距离是多少?

  另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习兴趣.

  例2  见教材P202.

  讲解完例2后:

  (l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生认识这种三角形中边的比与长度无关.

  (2)常识1:有一锐角是30°的直角三角形中,三边(从小到大)的比为 .

  常识2:等腰直角三角形三边(从小到大)的比为1:1: .

  学生掌握了这些常识可有两点好处:

  ①知道例2中“ ”以及习题5.l第2题(1)中“边长为4”.(2)中的“对角线AC=a”这些条件实际上都是多余的.

  【小结】

  1.两条线段比的概念以及应注意的问题.

  2.会求两条线段的比.

  七、布置作业 

  教材P210中2、3.

  八、板书设计 

数学教案-比例线段 篇2

  一、教学目标 

  1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.

  2.掌握比例基本性质和合分比性质.

  3.通过通过的应用,培养学习的计算能力.

  4.通过比例性质的教学,渗透转化思想.

  5.通过比例性质的教学,激发学生学习兴趣.

  二、教学设计

  先学后做,启发引导

  三、重点及难点

  1.教学重点 比例性质及应用.

  2.教学难点  正确理解成比例线段及应用.

  四、课时安排

  1课时

  五、教具学具准备

  股影仪、胶片、常用画图工具

  六、教学步骤 

  【复习提问】

  1.什么是线段的比?

  2.已知 这两条线段的比是 吗,为什么?

  【讲解新课】

  1.比例线段:见教材P203页。

  如:见教材P203页图5-2。

  又如:

  即a、b、c、d是成比例线段。

  注:①已知 问这四条线段成比例吗?

  (答:成比例。 ,这里与顺序无关)。

  ②若已知a、b、c、d是成比例线段,是指 不能写成 (在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

  板书教材P203页比例线段的一些附属概念。

  2.比例的性质:

  (1)比例的基本性质:如果 ,那么 。

  它的逆命题也成立,即:如果 ,那么 。

  推论:如果 ,那么 。

  反之亦然:如果 ,那么 。

  ①基本性质证明了“比例式”和“等积式”是可以互化的。

  ②由 ,除可得到 外,还可得到其它七个比例式。即由一个等积式 ,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。 。再由等式的对称性写出另外四个比例式: 。注意区别与联系。

  ③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

  ④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

  (2)合比性质:如果 ,那么

  证明:∵ ,∴ 即:

  同理可证: (找学生板演)

  (3)等比性质:如果

  那么

  证明:设 ;则

  ∴

  等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

  例1(要求了解即可)

  (1)已知: ,求证: 。

  证明:∵ ,∴

  “通法”:∵ ,∴ 即

  (2)已知: ,求证: 。

  方法一:

  方法二:

  (1)÷(2)得:

  【小结】

  (1)比例线段的概念及附属概念。

  (2)比例的基本性质及其应用。

  八、布置作业 

  (1)求

  ① ② ③

  (2)求下列各式中的x

  ① ② ③ ④

  九、板书设计 

  比例线段(二)

  1.比例线段:

  教师板书定义

  ………

  比例线段的附属概念

  ………

  2.比例的性质

  (1)比例基本性质

  …………

  注意:(1)

  ②

  ③

  3.课堂练习