首页数学教案八年级数学教案数学教案-二次根式的加减法(精选2篇)

数学教案-二次根式的加减法(精选2篇)


数学教案-二次根式的加减法(精选2篇)

数学教案-二次根式的加减法 篇1

  (一)教学过程 

  【复习提问】

  1.同类二次根式的定义.

  2.二次根式加减法的法则.

  3.加减运算中注意的问题.

  【例题】

  例1  判断:

  (1) ;( )

  (2) ;( )

  (3) ;( )

  (4) ;( )

  (5) .( )

  (要求学生找出错误的原因,能进行加减运算的,要加以改正.)

  例2  计算:

  (1) .

  解:

  .

  (2) .

  解:

  .

  (3) .

  解:

  .

  (4) .

  解:

  .

  小结:二次根式加减运算的步骤:

  (1)如果有括号,根据去括号法则去掉括号.

  (2)把不是最简二次根式的二次根式进行化简.

  (3)合并同类二次根式.

  例3  当 , 时,求代数式 的值.

  解:

  .

  当 时, 时,

  原式

  .

  例4  已知 ,求下列各式的近似值(精确到0.01):

  (1) ;

  (2) .

  解:(1) .

  当 时,

  原式 .

  (2)

  .

  当 时,

  原式 .

  注意:求值时,一般应对代数式先化简,再代入数值.

  (二)随堂练习

  计算:

  (1) ;

  (2) ;

  (3)已知 , ,求式子 的近似值(精确到0.01).

  (三)总结、扩展

  正确地进行二次根式的加减法运算,需解决好几个环节:去括号,化简二次根式,确定同类二次根式,合并的方法等.

  可通过例题加以说明.

  练习:教材P191中2(6)、(7),3;P194中7

  (四)布置作业 

  教材P193中3(7)、(8)、(9)、(10);教材P194中4(5)、(6),5.

  (五)板书设计 

  标题

  1.例题 2.练习题

  例1…… 3.小结

  例2……

  例3……

  八、背景知识与课外阅读

  二次根式的加减法法则与乘除法法则的区别

  运算

  二次根式乘除法

  同类二次根式的加减法

  系数

  系数相乘除

  系数相加减

  被开方数

  被开方数相乘除

  被开方数不变

  化简

  把最后结果化成最简二次根式

  可先化成最简二次根式再运算

数学教案-二次根式的加减法 篇2

  教学建议

  本节的重点有两个:

  ⒈同类二次根式的概念

  ⒉二次根式加减运算的方法

  本节的主要内容是讲解二次根式的加减法,而二次根式的加减法的关键是把二次根式化为最简二次根式,再把同类二次根式合并.二次根式的加减法运算实质是合并同类二次根式,前提是要充分了解同类二次根式的概念,因此同类二次根式的概念是本节的一个重点.

  本节的难点 二次根式的加减法运算

  二次根式的加减法首先是化简,在化简之后,就是类似整式加减的运算了.整式加减无非是去括号与合并同类项,二次根式的加减在化简之后也是如此,同类二次根式类似同类项.但是学生初次接触二次根式的加减法,在运算过程中容易出现各种各样的错误,因此熟练掌握二次根式的加减法运算是本节的难点.

  本节的主要内容是讲解二次根式的加减法,而二次根式的加减法的关键是把二次根式化为最简二次根式,再把同类二次根式合并.

  (1)在知识引入的讲解中,有两种不同的处理方法:一是按照教材中的方法,先给出几个二次根式,把他们都化成最简二次根式,在进行比较或者加减运算,从而引出二次根式的加减法和同类二次根式;二是先复习同类项的概念或进行一两道简单的正式加减的题目,通过类比引出同类二次根式和二次根式的加减法.两种处理方法各有优劣,教师在教学过程 中可根据学生的实际情况进行选择,当然也可以把这两种方法综合应用,但有些过繁.

  (2)在教材例1的教学中,教师可以根据学生情况进行细分处理,例如分成几个小问题:①把被开方数都是整数的放在一个小题中,②把被开方数都是分数的放在一个小题中,③把被开方数带有简单字母的放在一个小题中,④把字母次数略高于2的放在一个小题中,……使问题的解决有一个由浅入深的渐进过程,便于学生参与其中,也容易使学生获得成就感.

  (3)在组织学生进行二次根式的加减法教学中,同样将例题细分成几个层次进行教学,例如:①不需要化简能直接进行相加减的,②需要化简但被开方数都是简单整数的,③被开方数都是有理数但既有整数又有分数的,④被开方数含有字母的,等等.

  (4)在二次根式加减法的组织教学中,虽然教材已经不要求二次根式加减法的法则,但可以组织学生自己总结法则,既有利于学生的参与,又能提高学生的观察、分析和归纳能力.

  (5)在二次根式加减法的整个教学环节中,教师都要及时纠正学生的错误认识,比如:①不是最简二次根式就不是同类二次根式,②该化简的没有化简,或化简的不正确,③该合并的没有合并,不该合并的给合并了,或者合并错了,等等类似情况.教师在教学中可以出一些容易出错的题目让学生进行辨别,以利于知识的巩固.

  教学设计示例1

  一、素质教育目标

  (一)知识教学点

  1.使学生了解最简二次根式的概念和同类二次根式的概念.

  2.能判断二次根式中的同类二次根式.

  3.会用同类二次根式进行二次根式的加减.

  (二)能力训练点

  通过本节的学习,培养学生的思维能力并提高学生的运算能力.

  (三)德育渗透点

  从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.

  (四)美育渗透点

  通过二次根式的加减,渗透二次根式化简合并后的形式简单美.

  二、学法引导

  1.教师教法 引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的计算方法.

  2.学生学法 通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.

  三、重点·难点·疑点及解决办法

  1.教学重点 二次根式的加减法运算.

  2.教学难点  二次根式的化简.

  3.疑点及解决办法 二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.

  四、课时安排

  2课时

  五、教具学具准备

  投影片

  六、师生互动活动设计

  1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.

  2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.

  3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.

  4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.

  七、教学步骤 

  (-)明确目标

  学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.

  (二)整体感知

  同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.

  第一课时

  (-)教学过程 

  【复习引入】

  什么样的二次根式叫做最简二次根式?(由学生回答)

  与 的形式与实质是什么?

  可以化简为 .

  继续提问: ,可以化简吗?

  ,可以化简吗?

  这就是本节课研究的内容——二次根式的加减法.

  【讲解新课】

  1.复习整式的加减运算

  计算:

  (1) ;

  (2) ;

  (3) .

  小结:整式的加减法,实质上就是去括号和合并同类项的运算.

  2.例题

  (1)计算  .

  解:  .

  (2)计算   .

  解:  .

  小结:

  (1)如果几个二次根式的被开方数相同,那么可以直接根据分配律进行加减运算.

  (2)如果所给的二次根式不是最简二次根式,应该先化简,再进行加减运算.

  定义:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.

  3.例题

  例1  下列各式中,哪些是同类二次根式? , , , , , , .

  解:略.

  例2  计算  .

  解:

  .

  例3  计算  .

  解:

  .

  二次根式加减法的法则:

  二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式进行合并,合并方法为系数相加减,根式不变.

  (可对比整式的加减法则)

  例4  计算:

  (1) .

  解:

  .

  (2) .

  解:

  .

  (二)随堂练习

  计算:

  (1) ;

  (2) ;

  (3) .

  练习:教材P192中1、2(1)、(2)、(3)、(4)、(5);教材P193中1、2.

  (三)总结、扩展

  同类二次根式的定义.

  二次根式的加减法与整式的加减法进行比较,强调注意的问题.

  (四)布置作业 

  教材P193中(1)、(2)、(3)、(4)、(5)、(6);教材P194中4(1)、(2)、(3)、(4).

  (五)板书设计 

  标题

  1.复习题 5.例题(1)、(2)、

  2.整式的加减例题 (3)、(4)

  3.例题(1)、(2) 6.练习题

  4.同类二次根式 7.小结