首页数学教案七年级数学教案2.2数轴教学设计(精选4篇)

2.2数轴教学设计(精选4篇)


2.2数轴教学设计(精选4篇)

2.2数轴教学设计 篇1

  一、教学目标

  1、知识与能力:通过与温度计的类比,认识数轴,会用数轴上的点表示有理数;借助数轴理解相反数的概念,知道互为相反的一对数在数轴上的位置关系;会求一个有理数的相反数;能利用数轴比较有理数的大小。

  2、过程与方法:经历从现实问题中建立数学模型,从数形两个侧面理解与解决问题,使学生认识用形来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念。

  3、情感态度与价值观:从学生熟悉的现实情境中学习数轴,体会数学知识与现实世界的联系;通过分组动手操作实践,体会数学充满探索性,并在学习活动中学会合作、学会发现知识,找到获取知识的方法,使学生体验到成功的乐趣,数学知识的应用价值。

  二、教学重点:

  数轴和相反数的概念及用数轴上的点表示有理数

  三、教学难点:

  数轴的概念和相反数反映在数轴上的性质

  四、教学设计

  (一)创设情境,引出课题

  教师出示一只温度计,首先让学生说说温度计在日常生活中的应用,然出提问:

  (1)温度计上的刻度是怎样表示温度的?

  (2)把温度计横放(零上温度向右),你觉得它像什么?

  (3)你能把温度计的刻度画在纸上吗?引出新课:“数轴”。

  (借助于温度计,用类比的数学思想方法,使学生易于接受数轴。感受到数学是真实的、亲切的。这些问题的创设有利于唤起学生的好奇心,激发学生的求知欲,调动学生的思维积极性,学生很自然地投入到学习活动中去。)

  (二)合作讨论,探究新知

  1、动手操作:师生一起画一条数轴。

  [讲清数轴的画法:一画(直线);二定(定原定);三选(选正方向);四统一(单位长度要统一)。]

  2、观察数轴有什么特征?(让学生讨论)

  (如:数轴的三要素——原点、正方向、单位长度,类比温度计三者缺一不可,正数都在原点的右边,负数都在原点的左边等等。)

  3、考考你:下面图形是数轴的是( )

  (A) (B)

  (C) (D)

  (通过判断,加深对数轴概念的理解,掌握正确的.画法。)

  4、问题:类似温度计的刻度,任何有理数都能用数轴上的点表示吗?

  (引导学生独立思考得出:正数用原点右边的点表示,负数用原点左边的点表示,零用原点表示,任何一个有理数都可以用数轴上的点来表示。)

  (通过设置问题串,使学生了解知识的产生过程,培养学生分析、归纳的能力,实现从实践到理论的提高。)

  (三)解释应用,体验成功

  1、例题教学

  例1 指出数轴上A、B、C、D各点表示什么数?

  (合作交流,获取正确答案)

  (指出数轴上已知点所表示的数,是由“形”到“数”的过程。)

  例2画出数轴,并用数轴上的点表示下列各数:

  4,,-5,0,5,-4,-

  (动手操作,体验数学活动充满探索。)

  (把给定的数用数轴上的点表示,是“数”到“形”的思维过程。)

  归纳:例1、例2,从两个侧面体现了数形结合的意思,是教学中要渗透的数学思想方法。

  2.观察例2中画好的数轴,4与-4有什么相同与不同之处,与-,-5与5呢?像这样关系的两个数你还能找出多少对?

  合作讨论:相同点是:它们在数轴上的位置到原点的距离都是两个长度单位;不同点是:它们位居原点的两边。这样的数对可找出无数对,如:与-,5与-5等。

  教师引导学生得出:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数是互为相反数,特别地,0的相反数是0。通常在一个数的前面添上“-”号,或改变符号,用这个新数表示原数的相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  3、考考你:

  (1)下面两个数是互为相反数的是( )

  A、-与0.2 B、与-0.333

  C、-2.25与2 D、π与3.14

  (2)写出三对非零相反数

  (四)拓展创新,巩固概念

  (1)问题:数轴上的两个点,右边的点表示的数与左边的点表示的数有怎样的大小关系?你能举例说明吗?

  (分组讨论、合作交流、获得数学的猜想。)

  (猜想温度计上显示的温度,上边的温度总比下边的温度高,如:-5℃比-7℃温度高,所以右边的点表示的数总比左边的点表示的数大,即:-5>-7。)

  (2)在数轴上距原点3个单位长度的点表示什么数?它们有什么关系?距原点5个单位呢?a个单位呢?(a>0)

  (学生回答,并相互补充,培养学生发散思维的能力;知道若a为有理数,则它的相反数为-a。)

  (3)书上12页练习1与练习2

  (五)课堂小结

  通过本节课的学习,你有什么收获?

  (数轴和相反数的概念,把有理数表示在数轴上,

  (六)课外延伸(有兴趣的同学完成)

  1、填一填:

  右面是一个正方体纸盒的展开图,请把-10、7、10、-2、-7、2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两上数互为相反数。

  (课外同学之间讨论,尝试不同的填法,并用模型检验结果的正确性,本题要求学生有一定的空间想象力,将“数”和“形”有关内容有机地结合起来。)

  2、想一想:某人在A地向东走10米,然后折回向西走3米,又折回向东走6米,问此人在A地哪个方向?距离为多少?答:此人在A地正东方向,距离A地13米。

  (可借助于数轴求解,把实际问题转化为数学模型,以A为原点,向东为正建立模型,实际行走的路线为A→B→C→D。)

  向东走10米

  -2 -1 0 1 2

  1 2 3

  -2 -1 0 1 2

  -3-2 -1 0 1 2 3

  -2 -1 0 1 2

  A D C B

  · · · ·

  -2 0 2 4 6 8 10 12

  A C B D

  ? ? ? ?

2.2数轴教学设计 篇2

  一、教学目标

  1.使学生正确理解数轴的意义,掌握数轴的三要素;

  2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

  3.使学生初步理解数形结合的思想方法.

  二、教学重点和难点

  重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

  难点:正确理解有理数与数轴上点的对应关系.

  三、课堂教学过程设计

  (一)创设情境,引入新课

  师:大家知识温度计的'用途是什么?

  生:温度计可以测量温度

  (出示投影1)

  三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

  师:三个温度计所表示的温度是多少?

  生:2℃,-5℃,0℃.

  我们能否用类似温度计的图形表示有理数呢?

  这种表示数的图形就是今天我们要学的内容—数轴(板书课题).

  (二)探索新知,讲授新课

  1.数轴的画法

  与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

  第一步:画直线定原点原点表示0(相当于温度计上的0℃).

  第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).

  第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).

  (出示投影1)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示-1的点在什么位置?

  (4)原点向右0。5个单位长度的a点表示什么数?原点向左个单位长度的b点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.

  学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.

  教师根据学生回答给予肯定或否定,纠正后板书.

  2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.

  向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据.

  学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.

  3.尝试反馈,巩固练习

  请大家回答下列问题:

  (出示投影2)

  (1)有人说一条直线是一条数轴,对不对?为什么?

  (2)下列所画数轴对不对?如果不对,指出错在哪里?

  学生活动:学生思考,不准讨论,想好后举手回答.

  让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.

  4.有理数与数轴上点的关系

  通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示.

  例1画一条数轴,并画出表示下列各数的点:

  1,5,0,-2。5,.

  学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.

  例2指出数轴上a、b、c、d、e各点分别表示什么数?

  先让学生思考一会,然后学生举手回答解:a表示-3;b表示;c表示3;d表示;e表.

2.2数轴教学设计 篇3

  一、教材分析

  《数轴》是湘教版七年级上册第一单元的内容。本节课主要是在学生学习了有理数概念的基础上,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

  二、教学目标

  知识技能:①了解数轴的概念,学会如何画数轴;

  ②知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

  过程与方法:①从直观认识到理性认识,从而建立数轴概念。

  ②通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法。

  情感态度价值观:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性。

  三、重难点

  重点:

  正确理解数轴的概念和有理数在数轴上的'表示方法。

  难点:

  建立有理数与数轴上的点的对应关系(数与形的结合)。

  四、教学教法

  教法:启发式教学法和师生互动式教学模式。

  学法:“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。

  五、教学过程

  (一)创设情景引入课题

  1、观察温度计,体会数、形对应。学生观察温度计后回答下列问题:

  ①零上5℃怎样表示?

  ②零下10℃怎样表示?

  ③0℃怎样表示?

  2、画情境图,体会方向与距离

  在一条东西向的马路上,有一个汽车站,汽车站东3m和处有一棵柳树和一棵杨树,汽车站西3m和处分别有一棵槐树和一根电线杆,试画图表示这一情境。

  (二)得出定义揭示内涵

  1、提问,到底什么是数轴?如何画数轴?

  2、丰富数轴的内涵:分数和小数在数上怎么表示?

  3、观察数轴上的有理数排列的大小?

  4、数轴上表示—2的点在原点的____边,距离原点的距离是____。

  表示3的点在原点的___边,距原点的距离是______。 小结

  ①位于数轴左(下)边的数总比右(上)边的数小。

  ②一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的

  距离是____个单位长度;表示数—a的点在原点的____边,与原点的距离是____个单位长度。

  (三)手脑并用深入理解

  1、学生讨论下列图形中哪些是数轴,哪些不是,为什么?

  2、画数轴并表示出下列有理数,—2,2,0,

  3、指出数轴上A、B、C、D、E点分别表示什么数?

  (四)归纳总结强化思想

  1、你知道什么是数轴吗?这节课你学会了用什么来表示有理数?

  2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?

  (五)分层作业强化思想

  1、教材第12页第

  1、2题。

  2、补充练习。

  ⑴画一条数轴,并表示出如下各点:±,±,±。

  ⑵画一条数轴,并表示出如下各点:1000,5000,—20xx。

  ⑶在数轴上标出到原点的距离小于3的整数。

  ⑷在数轴上标出—5和+5之间的所有整数。

  3、思考练习

  在数轴上能否实际画出表示一千分之一的点?这个点存在吗?

2.2数轴教学设计 篇4

  一、教学目标

  1.使学生正确理解数轴的意义,掌握数轴的三要素;

  2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

  3.使学生初步理解数形结合的思想方法.

  二、教学重点和难点

  重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

  难点:正确理解有理数与数轴上点的对应关系.

  三、课堂教学过程设计

  (一)创设情境,引入新课

  师:大家知识温度计的用途是什么?

  生:温度计可以测量温度

  (出示投影1)

  三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

  师:三个温度计所表示的温度是多少?

  生:2℃,-5℃,0℃.

  我们能否用类似温度计的图形表示有理数呢?

  这种表示数的图形就是今天我们要学的内容—数轴(板书课题).

  (二)探索新知,讲授新课

  1.数轴的画法

  与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

  第一步:画直线定原点 原点表示0(相当于温度计上的0℃).

  第二步:规定从原点向右的为正方向 那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).

  第三步:选择适当的长度为单位长度 (相当于温度计上每1℃占1小格的长度).

  (出示投影1)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示-1的点在什么位置?

  (4)原点向右0.5个单位长度的a点表示什么数?原点向左 个单位长度的b点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.

  学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.

  教师根据学生回答给予肯定或否定,纠正后板书.

  2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.

  向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据.

  学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.

  3.尝试反馈,巩固练习

  请大家回答下列问题:

  (出示投影2)

  (1)有人说一条直线是一条数轴,对不对?为什么?

  (2)下列所画数轴对不对?如果不对,指出错在哪里?

  学生活动:学生思考,不准讨论,想好后举手回答.

  让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.

  4.有理数与数轴上点的关系

  通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示.

  例1  画一条数轴,并画出表示下列各数的点:

  1,5,0,-2.5, .

  学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.

  例2 指出数轴上 a、b、c、d、e各点分别表示什么数?

  先让学生思考一会,然后学生举手回答解:a表示-3;b表示 ; c表示3;d表示 ;e表 .

  上一篇:2.2 数轴练习

  下一篇:《2.2 数轴说课稿