首页数学教案八年级数学教案16.1从分数到分式(通用2篇)

16.1从分数到分式(通用2篇)


16.1从分数到分式(通用2篇)

16.1从分数到分式 篇1

  课题: 从分数到分式

  课时: 一课时

  知识与技能目标

  1.使学生了解分式的概念,明确分母不得为零是分

  式概念的组成部分.

  2.使学生能够求出分式有意义的条件.

  过程与方法目标

  能用分式表示现实情境中的数量关系,体会分式是

  表示现实世界中一类量的数学模型,进一步发展符号

  感,通过类比分数研究分式的教学,引导学生运用类比

  转化的思想方法研究解决问题.

  教学重点和难点

  准确理解分式的意义,明确分母不得为零既是本节

  的重点,又是本节的难点.

  教学方法: 探究与讲授结合.

  教学过程

  活动一 情境引入:

  一般轮船在静水中的最大航速为20千米/时,它沿江

  以最大航速顺流流航行100千米所用时间,与以最大航

  速逆水航行60千米所用时间相等,江水的流速为多少?

  活动二 思考

  活动三 观察

  (1) 由学生分组讨论分式的定义,对于“两个整式相

  除叫做分式”等错误,由学生举反例一一加以纠正,得

  到结论:

  的分母.

  (2)由学生举几个分式的例子.

  (3)学生小结分式的概念中应注意的问题.

  ①两个整式相除

  ②.分母中含有字母.

  (4)整式与分数的不同.分工具有一般性.

  活动四 分式中的分母应满足什么条件?

  如同分数一样,分式的分母不能为零

  活动五 : 1、求分式的值.2、何时分式的值为零?

  例1(1)当a=1,2时,求分式 的值;

  解:(1)当a=1时,

  当a=2时

  例2当x取何值时,下列分式有意义?

  思考:若把题目要求改为:“当x取何值时下列分式无意义?”该怎样做?

  例3 当x取何值时,下列分式的值为零?

  解:由分子x+3=0得x=-3.

  而当x=-3时,分母2x-7=-6-7≠0.

  ∴当x=-3时,原分式值为零.

  例4 当x 取何值是分式 的值为零。

  解:由分子|x| - 1 =0得x = ±1

  当x = 1时 x+1≠0

  当x=-1时x+1=0,分式无意义。

  ∴当x = 1时原分式的值为零。

  小结:若使分式的值为零,需满足两个条件:

  ①分子值等于零;②分母值不等于零.

  活动六 课堂练习p课本第6页1——3

  活动七 课堂小结

  本节课你学到了哪些知识和方法?

  1.分式的定义。

  2、分式与分数的区别.

  3.分式何时有意义?

  4.分式何时值为零?

  作业

  教材p10页 第1—3题

  教学反思

16.1从分数到分式 篇2

  从分数到分式

  一、 教学目标

  1. 了解分式、有理式的概念.

  2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.

  二、重点、难点

  1.重点:理解分式有意义的条件,分式的值为零的条件.

  2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

  3.认知难点与突破方法

  难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.

  三、例、习题的意图分析

  本章从实际问题引出分式方程 = ,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.

  1.本节进一步提出P4[思考]让学生自己依次填出: , , , .为下面的[观察]提供具体的式子,就以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?

  可以发现,这些式子都像分数一样都是 (即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.

  P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.

  希望老师注意:分式比分数更具有一般性,例如分式 可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .

  2. P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式 才有意义.

  3. P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.

  4. P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.

  四、课堂引入

  1.让学生填写P4[思考],学生自己依次填出: , , , .

  2.学生看P3的问题:一艘轮船在静水中的航速为20千米/时,它沿江以航速顺流航行100千米所用实践,与以航速逆流航行60千米所用时间相等,江水的流速为多少?

  请同学们跟着教师一起设未知数,列方程.

  设江水的流速为x千米/时.

  轮船顺流航行100千米所用的时间为 小时,逆流航行60千米所用时间 小时,所以 = .

  3. 以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?

  五、例题讲解

  P5例1. 当x为何值时,分式有意义.

  [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解

  出字母x的取值范围.

  [提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.

  (补充)例2. 当m为何值时,分式的值为0?

  (1) (2) (3)

  [分析] 分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.

  [答案] (1)m=0 (2)m=2 (3)m=1

  六、随堂练习

  1.判断下列各式哪些是整式,哪些是分式?

  9x+4, , , , ,

  2. 当x取何值时,下列分式有意义?

  (1) (2) (3)

  3. 当x为何值时,分式的值为0?

  (1) (2) (3)

  七、课后练习

  1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

  (1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.

  (2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.

  (3)x与y的差于4的商是 .

  2.当x取何值时,分式 无意义?

  3. 当x为何值时,分式 的值为0?

  八、答案:

  六、1.整式:9x+4, , 分式: , ,

  2.(1)x≠-2 (2)x≠ (3)x≠±2

  3.(1)x=-7 (2)x=0 (3)x=-1

  七、1.18x, ,a+b, , ; 整式:8x, a+b, ;

  分式: ,

  2. X = 3. x=-1