首页数学教案小学五年级数学教案《方程》教案(通用17篇)

《方程》教案(通用17篇)


《方程》教案(通用17篇)

《方程》教案 篇1

  一、教材分析

  本节是普通高中课程标准实验教科书数学必修1的第三章第一节,是在学生学习函数的基本性质和指、对、幂三种基本初等函数基础上的后续,展现函数图象和性质的应用。

  本节重点是通过“二分法”求方程的近似解,使学生体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识。

  本课是本章节的第一节课,结合函数图象和性质向学生介绍零点概念及其存在性,为后面“二分法”的学习打下伏笔,也为后来的算法学习作好基础。

  二、学情分析

  通过初中的学习,学生已经熟练掌握了一次方程、二次方程求根的方法、描点作图法和一次函数、二次函数、反比例函数的图象;通过高中前两章的学习,强化了描点作图法,初步掌握了对勾函数、指数函数、对数函数、幂函数的图象及基本性质,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。但是,学生对函数与方程之间的联系缺乏了解,因此我们有必要点明函数的核心地位。

  三、教学目标的确定

  1、知识与技能:

  (1)能够结合具体方程(如二次方程),说明方程的根、相应函数图象与x轴的交点横坐标以及相应函数零点的关系;

  (2)正确理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函数存在零点的一个充分条件;

  (3)能利用函数图象和性质判断某些函数的零点个数;

  (4)能顺利将一个方程求解问题转化为一个函数零点问题,写出与方程对应的函数;并会判断存在零点的区间(可使用计算器)。

  2、过程与方法:

  通过学生活动、讨论与探究,体验函数零点概念的形成过程,引导学生学会用转化与数形结合思想方法研究问题,提高数学知识的综合应用能力。

  3、情感态度价值观:

  让学生初步体会事物间相互转化以及由特殊到一般的辨证思想,充分体验数学语言的严谨性,数学思想方法的科学性,让学生进一步受到数学思想方法的熏陶,激发学生的学习热情。

  之所以这样确定教学目标,一方面是根据教材和课程标准的要求,另方面是想在学法上给学生以指导,使学生的能力得到提高。

  四、教学重难点的确定

  重点:函数零点的概念、求法和函数零点存在性定理。

  难点:函数零点存在性定理的掌握与运用。

  依据:在高考中考察函数零点相关问题,函数零点存在性定理为“二分法”的学习奠定基础,也是能否准确掌握本节知识的关键。

  四、教学方法的选择

  由于学生有一定的基础,是在原有知识上求新,根据学生的实际情况及培养目标,我采用“以问题为中心”的探究式的教学模式,由特殊到一般,激发学生学习兴趣,体现学生的主体地位。所选教学方法主要是引导启发,学生的学习方法是通过活动、讨论、探究,发现并准确归纳出结论。

  五、学习方法的选择

  在本节教学中我着重突出了教法对学法的引导,采用自主探究的学习法。在教学双边活动的过程中,以学生活动为主,自主探究,合作交流,运用“从特殊到一般,转化,数形结合”的数学思想方法,发现并准确归纳出结论引导学生探寻新知识,层层深入掌握新知识。

  六、教学流程

  七、教学过程

  1、复习式导入

  练习:

  (1)求方程x2—2x—3=0的根,画出函数y=x2—2x—3的图象;

  (2)求方程x2—2x+1=0的根,画出函数y=x2—2x+1的图象;

  (3)求方程x2—2x+3=0的根,画出函数y=x2—2x+3的图象。观察方程的根与函数和x轴交点的横坐标之间的关系。

  意图:问题比较简单,面向了全体学生,符合学生认知规律,真正让学生思维“动”起来。让学生感知“函数的零点”概念发生的过程和求函数零点的两种方法:方程求根法与图像法。

  2、推广到一般

  从△>0,△=0,△<0三个角度对一元二次方程ax2+bx+c=0的根和相应的二次函数y=ax2+bx+c与x轴的交点情况进行比对,得到一般性的结论。

  意图:让学生感知“特殊到一般”的辩证思想;求零点过程中,了解转化(求零点转化为求方程f(x)=0的根)的数学思想,感受函数与方程的联系。

  3、定义与关系

  定义:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。

  关系:方程f(x)=0有实数根

  函数y=f(x)有零点。

  归纳总结:我们求函数的零点有哪些方法?

  意图:拉近师生距离,体现课堂中学生的主体地位与师生间的平等关系。融洽的师生关系能真正让学生思维活跃起来,同时继续领会转化思想。

  4、探究零点存在性

  观察二次函数f(x)=x2—2x—3和对数函数f(x)=lgx的图象中零点两侧函数值的正负情况,探究函数零点存在性。如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有

  f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。函数y=f(x)的图象与x轴有交点

  意图:通过学生自主探究和师生互动,让学生体会数形结合思想,享受探究成功的愉悦。

  5、诠释零点存在性

  只要满足上述两个条件,就能判断函数在指定区间内存在零点,若要得到零点的个数,还需结合函数的单调性等性质进行判断。我们还要注意,这只是函数零点存在性的充分条件,它的逆命题就不成立了。

  意图:使学生准确理解零点存在性定理。

  6、例题讲解与练习

  例1求函数f(x)=lnx+2x—6的零点个数。意图:通过例题分析,学会用零点存在性定理确定零点存在区间,并且结合函数性质,判断零点个数的方法。

  练习(P88)

  作业:习题3、1A组3,复习参考题A组1

《方程》教案 篇2

  教学目标:

  1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。

  2、利用探索发现的等式的性质,解决简单的方程。

  3、经历了从生活情境的方程模型的'建构过程。

  4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。

  教学重难点:

  重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。

  难点:推导等式性质(一)。

  教学准备:

  一架天平、课件及班班通

  教学过程:

  一、创设情境,以情激趣

  师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?

  学生讨论纷纷。

  师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?

  二、运用教具,探究新知

  (一)等式两边都加上一个数

  1、课件出示天平

  怎样看出天平平衡?如果天平平衡,则说明什么?

  学生回答。

  2、出示摆有砝码的天平

  操作、演示、讨论、板书:

  5=5 5+2=5+2

  X=10 X+5=15

  观察等式,发现什么规律?

  3、探索规律

  初次感知:等式两边都加上同一个数,等式仍然成立。

  再次感知:举例验证。

  (二)等式两边都减去同一个数

  观察课件,你又发现了什么?

  学生汇报师板书:

  X+2=10

  X+2-2=10-2

  X =8

  (三)运用规律,解方程

  三、巩固练习

  1、完成课本68页“练一练”第2题

  先说出数量关系,再列式解答。

  2、小组合作完成69页“练一练”第3题。

  完成后汇报,集体订正。

  四、课堂小结

  这节课你学到了什么?学生交流总结。

  板书设计: 解方程(一)

  X+2=10

  解: X+2-2=10-2 ( 方程两边都减去2)

  X =8

《方程》教案 篇3

  教学目的:

  1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。

  2、提高分析数量关系的能力,培养学生思维的灵活性。

  3、在积极参与数学活动的过程中,树立学好数学的信心。

  教学重点、难点:

  引导学生独立分析问题,找出题目中的等量关系。

  教学对策:

  在积极参与数学活动的过程中,树立学好数学的信心。

  教学准备:

  教学光盘

  教学过程:

  一、复习准备

  1、解方程(练习一第6题的第1、3小题)

  4x+12=50 2.3x-1.02=0.36

  学生独立完成,再指名学生板演并讲评,集体订正。

  二、尝试练习

  师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。

  出示:30x÷2=360

  学生独立尝试完成,全班交流。

  指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?

  三、巩固练习

  1、出示练习一第7题。

  (1)分析数量关系

  提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。

  第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。

  (2)学生独立计算,并检验答案是否正确,全班核对。

  小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。

  2、练习一第8题。

  学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)

  学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)

  3、练习一第9题。

  学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。

  学生独立解方程再集体订正。

  4、练习一第10题。

  教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。

  5、练习一第11题。

  学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)

  学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的书写格式。

  6、练习一第12题。

  提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢

  学生独立列方程解答,同桌同学互相检查,再集体订正。

  7、练习一第13题。

  学生阅读第13题,理解后独立解决问题,再交流。

  教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。

  四、全课小结

  说一说你这一节课的学习收获及还有什么问题。

  五、布置作业

  完成配套习题。

《方程》教案 篇4

  一、教学目标:

  1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。

  2、会用等式性质解形如x+5=12的简单方程。

  3、培养观察、分析概括的能力。

  二、课时安排:

  1课时

  三、教学重点:

  能用等式的性质解简单的方程。

  四、教学难点:

  了解等式的性质。

  五、教学过程

  (一)导入新课

  故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的?

  (板书:大象的体重=石头的重量)

  师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。

  检查预习。

  (二)讲授新课

  探究一:学习等式性质

  1、师操作:在天平两侧各放一个5克砝码。

  提问:你能用一个等式表示天两边关系吗?

  提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?

  提问:你还能用一个等式表示吗?

  教师呈现其他天平直观图,鼓励学生观察并写出等式。

  全班交流,

  教师总结概括出等式性质。

  等式两边都加上同一个数,等式仍然成立。

  师操作在刚才的基础上一个一个减砝码。

  提问:你能用等式来表示吗?

  提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?

  提问:你还能用一个等式表示吗?

  教师呈现其他天平直观图,鼓励学生观察并写出等式。

  全班交流,

  教师总结概括出等式性质。

  等式两边都减去同一个数,等式仍然成立。

  3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。

  (三)重点精讲。

  探究二:学习解方程

  师板书x+2=10问:用天平如何表示?

  问:如何用刚才的知识解方程?(两边都减去2)

  1、师根据学生回答板书并画出天平图。

  2、师在解题示范时要注重“解”和“等于号”的书写要求。

  3、交代检验方法。

  4、学生试着解方程。

  y-7=12 23+x=45

  组内交流收获和疑惑。

  小组汇报。

  教师总结板书:根据等式的性质解方程。

  (五)随堂检测

  1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。

  2、看图列方程,并解方程。

  3、解方程。

  (1)x – 19 = 2

  (2)x - 12.3 = 3.8

  4、看图列方程,并解方程。

  5、看图列方程,并解方程。

  6、看图列方程,并解方程。

  板书设计

  X+5=7 x-5= 7

  解:X+5-5=7-5解:x-5+5=7+5

  X=2 x=12

  等式的两边同时加上或者减去同一个数,等式仍然成立。

《方程》教案 篇5

  本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉和的基础知识比较多,教学内容分成三局部编排。

  第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。

  第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。

  第12~14页全单元内容的整理与练习。

  本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。

  1?从等式到方程,逐步构建新的数学知识。

  方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义。

  (1)

  借助天平体会等式的含义。

  等式是方程的生长点,同学在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让同学体会等式的含义。

  天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让同学在天平平衡的直观情境中体会等式,符合同学的认知特点。例1在天平图下方出现“=”,让同学用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。

  例2继续教学等式,教材的布置有三个特点:

  第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。同学在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于同学初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对同学的要求由扶到放。圆圈里的关系符号都要同学填写,同学在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让同学填写,这是因为他们以前没有写过含有未知数的等式与不等式。

  (2)

  教学方程的意义,突出概念的内涵与外延。

  “含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,同学陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知资料。教材首先告诉同学:

  像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的一起特点是“含有未知数”,也是“等式”。这时,假如让同学对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么同学对方程是等式的理解会更深刻。教材接着布置讨论“等式和方程有什么关系”,并通过“练一练”第1题让同学先找出等式,再找出方程,理解等式与方程这两个概念之间的包括与被包括关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使同学对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求同学自身写出一些方程并相互交流,让它们在写方程时关注方程的实质属性,从而巩固方程的概念。

  (3)

  用方程表示直观情境里的相等关系。

  第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养同学发现和理解实际情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:

  一是直观情境的出现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,同学比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让同学看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充沛了,看天平图列方程能让同学初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。

  在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个局部数相加是它们的总数。在几个局部数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,同学容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。假如少数同学列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于同学体会数量间的相等关系,对以后的教学也是有弊无利的。

  2?利用等式的性质解方程。

  在过去的小学数学教材里,同学是应用四则计算的各局部关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《规范》从同学的久远发展和中小学教学的衔接动身,要求小学阶段的同学也要利用等式的性质解方程。因此,本单元布置了关于等式性质的内容,分两段教学:

  第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都和时让同学运用等式的性质解方程。

  (1)

  在直观情境中,按“形象感受→笼统概括”的方式教学等式的性质。

  教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然坚持平衡。这种现象能形象地表示等式的性质,有利于同学的直观感受。

  例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+○20+。同学在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。

  另外,这道例题的8个等式中,有7个让同学在圆圈里填写“=”组成等式,这是引导同学切实关注等式有没有变化。右边的四个等式分别让同学在括号里填出同时加上或减去的数,有利于发现等式的性质。

  例5教学等式的另一个性质。教材注意利用同学前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让同学写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意:

  一是让同学正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点同学能够接受。因为前面的教学中,已经多次提到除数不能是0。

  (2)

  应用等式的性质解方程。

  例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,同学先从图中能得到求x值的启示:

  只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理:

  等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让同学联系已有的解方程经验和有关的等式性质,考虑“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从同学实际动身,让同学主动学习的教育理念。另外,例4的编写还注意了三点:

  一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必需严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导同学根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。

  协助同学逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真考虑的问题。用好教材设计的两道题,能培养同学这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号,

  引导同学正确应用等式的性质,体会解方程的战略和思路,理出解方程的关键步骤。同学在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,协助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后布置的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的.内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的考虑流畅、书写简便,从而提升解方程的能力。教学时要让同学体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以和为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。

《方程》教案 篇6

  第一单元方程

  第一课时   方程的意义

  教学内容:教科书第1~2页的内容及练习一的1~3题。

  教学目标:1、通过学习,使学生理解方程的含义,知道像x+50=150、2x=200这样含有未知数的等式是方程。

  2、培养学生概括、归纳的能力。

  教学过程:

  一、教学例1

  出示例1图,提出要求:你能用等式表示天平两边物体的质量关系吗?

  学生在本子上写。

  指名回答,板书:50+50=100

  含有等号的式子叫等式,它表示等号两边的结果是相等的。

  二、教学例2

  学生自学

  要求:1、学生在书上独立填写,用式子表示天平两边的质量关系。

  2、小组同学交流四道算式,最后达成统一认识:

  x+50>100            x+50=100

  x+50<100            x+x=100

  根据学生的回答,教师板书这4道算式。

  3、把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,

  要说出理由。

  学生可能会这样分:

  第一种:

  x+50>100            x+50=100

  x+50<100            x+x=100

  第二种:

  x+50>100            x+x=100

  x+50<100           

  x+50=100

  引导学生理解第一种分法:

  你为什么这样分,说说你的想法。

  小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

  指名学生说,教师板书:像x+50=150、2x=200这样含有未知数的等式是方程。

  提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”

  那x+50>100 、x+50<100为什么不是方程呢?

  提问:那等式和方程有什么关系呢,在小组里交流。

  方程一定是等式,但等式不一定是方程。

  三、完成“试一试”、“练一练”

  学生独立完成。

  集体订正时围绕“含有未知数的等式”进一步理解方程的含义

  四、课堂作业:练习一的1、2、3。

  板书:

  x+50=100

  x+x=100

  像x+50=150、2x=200这样含有未知数的等式是方程。

  第二课时     等式的性质(一)

  教学内容:教科书第3~4页的内容,练习一的4~6题。

  教学目标:1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。

  2、根据等式的性质(一)学会解决含有加、减号的方程。

  3、有意识地培养学生的自学能力。

  教学过程:

  一、教学例3

  出示图,学生根据图独立填空。

  根据学生的回答,板书:

  20=20             20+10=20+10

  x=50              x+20=50+20

  50+a=50+a       50+a-a=50+a-a

  x+20=70          x+20-20=70-20

  提问:比较两边的算式,你有什么发现,在小组里说说。

  全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得的结果仍然

  是等式。这是等式的性质。

  独立完成“练一练”第1题

  二、教学例4

  学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。

  全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由学生解决,

  学生解决不了的教师解决。

  一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未知数。

  二是检验:把计算的结果代到原式,看左右两边是否相等。

  三强调书写的格式。

  小结:求方程中未知数值的过程,叫做解方程。

  完成“试一试”“练一练”的第2题。

  学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的地方及时分

  析错误原因,帮助他们弄懂。

  三、课堂作业

  练习一的第4、5、6题。

  第4、6题做在书上,第5题写在作业本上。

  板书:

  等式两边同时加上或减去同一个数,所得的结果仍然是等式。

  这时等式的性质。

  x+10=50

  解: x+10-10=50-10

  x=40

  第三课时     练习

  教学内容:教科书第6页的7~12题。

  教学要求:1、通过练习,使学生进一步体会方程的含义。

  2、进一步理解等式的性质,能根据等式的性质正确地解方程。

  教学过程:

  一、基础练习

  1、说出下面的式子哪些是方程,哪些不是,为什么?

  20+17=37        12-y=4         a+12=35

  21-b<14        x=14+23        16+a=27+b

  2、解方程

  x+125=370       520+x=710         x-4.9=6.4

  120-x=25        7.8+x=2.5         x+8.5=12

  学生独立完成,指名学生板演。

  选3题让学生说说想的过程。

  集体订正,帮有错的同学分析错误原因,使其明白。

  二、完成第6页的7~12题。

  第7题

  学生独立完成后指名回答,让学生说说是怎样想的。

  使学生明白:根据等式的性质是含有未知数的一边只剩下未知数,就能很快知道

  最后的结果。

  第9题

  先由学生独立完成。

  指名学生说:错在哪里,帮他分析一下,可能是什么原因造成的?怎样改正,我

  们在做题时要注意一些什么?

  第8题

  学生独立完成,指名板演。

  教师要特别关注前面解题还有错的学生,争取人人过关。

  集体订正,分析错误原因。

  第12题

  学生读题后独立思考解决问题的方法。

  小组内交流。

  全班交流,只要学生说出的方法是有道理的,教师都要给于肯定。

  三、课堂作业

  第6页的第10、11题。

  第四课时

  教学内容:教材第7~10页,例5、例6及相应的试一试,练一练,练习二第1~3题

  教学目标:

  1、使学生进一步理解并掌握等式的性质,即在等式两边都乘或除以同一个数(除以一个数时0除外),所得结果仍然是等式的性质。

  2、使学生掌握利用相应的性质解一步计算的方程。

  教学重点:使学生理解并掌握在等式两边都乘或除以同一个数(除以一个数时0除外)这一等式的性质。

  教学过程:

  一、复习等式的性质

  1、前一节课我们学习了等式的性质,谁还记得?

  2、在一个等式两边同时加上或减去同一个数,所得结果仍然是等式。那同学们猜想一下,如果在一个等式两边同时乘或除以同一个数(除以一个数时0除外),所得结果还会是等式吗?

  3、生自由猜想,指名说说自己的理由。

  4、那么,下面我们就通过学习来验证一下我们的猜想。

  二、教学例五

  1、引导学生仔细观察例五图,并看图填空。

  2、集体核对

  3、通过这些图和算式,你有什么发现?

  4、接下来,请大家要课练本上任意写一个等式。请你将这个等式两边同时乘同一个数,计算并观察一下,还是等式吗?再将这个等式两边同时除以同一个数,还是等式吗?能同时除以0吗?

  5、通过刚才的活动,你又有什么发现?

  6、引导学生初步总结等式的性质(关于乘除的)

  7、板书出示:等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。

  8、练一练第一题

  ⑴、指名读题

  ⑵、生独立填写在书上,集体核对

  ⑶、你是根据什么来填写的?

  三、教学例六

  1、出示例六教学挂图,指名读题,同时要求学生仔细观察例六图

  2、长方形的面积怎样计算?

  3、根据题意怎样列出方程?指名口答,你是怎么想的?板书:40x=960

  4、在计算时,方程两边都要除以几?为什么?

  5、生独立计算,指名上黑板。全班核对

  6、计算出x=24后,我们怎样才能确定这个数是否正确?请大家口算检验一下。最后将例六填写完整。

  7、小结:在刚才计算例六的过程中,我们将方程的两边都同时除以40,这是为什么?为什么将等式两边都同时除以40,等式仍成立?

  8、试一试

  ⑴、出示x÷0.2=0.8

  ⑵、生独立解方程,指名上黑板。师巡视并帮助有困难的学生。

  ⑶、集体核对,指名口答:你是怎样解方程的?为什么可以这样做?

  9、练一练第二题

  ⑴、生独立解方程。指名上黑板,师巡视。

  ⑵、集体订正。

  四、巩固练习

  1、练习二第一题

  ⑴、请每位同学在小组里说一说每一题应该怎样解,指名口答。(第三组)

  ⑵、生独立解方程。指名上黑板

  ⑶、集体核对

  2、练习二第二题

  ⑴、指名读题

  ⑵、生独立填写,师巡视。

  ⑶、你在填的时候是怎样想的?

  五、课堂作业

  练习二第三题

  教后小记

  ________________________________________________________________________________________________________________________________

  第五课时

  教学内容:教材第8~11页,例7及相应的试一试,练一练,练习二第4~7题

  教学目标:使学生掌握列方程解决简单的实际问题。

  教学过程:

  一、教学例7

  1、出示教学挂图,指导学生仔细观察题目,明确题意。

  2、题目中已知什么,要求什么?这些量之间有什么关系?板书:小军的成绩-小刚的成绩=0.06米

  3、小军的成绩我们知道吗?不知道可以用什么来表示?

  4、接下来,请你用列方程的方法来解决这道问题。(生独立解决,师巡视)指名上黑板。

  5、集体核对,(指算式)这道算式表示什么意思?

  6、计算完结果后,你是怎样检验的?

  7、这道题目还可以怎样列式?(生小组内交流不同的算法,并说一说是根据什么数量关系计算的)

  8、小结:刚才我们用列方程的方法来解决了问题,谁来说一说,用列方程解答时,我们是怎样列出方程的,解答过程中要注意些什么?

  9、试一试

  ⑴、指名读题

  ⑵、题目的各个数量之间有什么关系?指名口答后生集体填写在书上。如有不同的可以书上补充。

  ⑶、请同学们用列方程的方法来解决这个问题。(生独立解决,师巡视)

  ⑷、集体核对。

  10、练一练

  ⑴、引导学生明确条件和问题。

  ⑵、引导学生明确题目中已知量与未知量的相等关系,并将这个关系写在书上。

  ⑶、根据数量关系列出方程并解答。(生独立解决,师巡视,帮忙有困难的学生)

  ⑷、集体核对。

  二、巩固练习

  1、练习二第4题

  ⑴、生独立读题,明确题意。

  ⑵、引导学生看图列出方程并解答。

  ⑶、集体核对。请你说一说你是怎样列出方程的。

  ⑷、做完后你是怎样检验的?

  2、练习二第5题

  ⑴、指名读题,明确题意。

  ⑵、小组讨论每题的数量关系,全班交流。生独立解答

  ⑶、集体核对

  3、练习二第6题

  ⑴、生独立完成,师巡视

  ⑵、小组内核对,同时交流讨论数量关系。

  ⑶、全班交流。

  三、课堂作业

  练习二第7题

  第六课时

  教学内容:教材第11页练习二8~12题

  教学目标:使学生熟练掌握等式的性质并用列方程的方法解决简单的实际问题。

  教学过程:

  一、复习等式的性质

  1、前几节课,我们学习了等式的性质,谁来说一说,等式有怎样的性质?指名口答。

  2、今天这节课,我们就进行一些相应的练习巩固知识。

  二、练习二第8题

  1、指名读题

  2、生独立填写在书上,集体订正。

  3、说一说,你是怎么填的。(小组内交流)

  4、我们在解答方程时,要养成检验的习惯,也就是将算出的未知数的值再代入方程,看等式是否成立。

  三、练习二第9题

  1、指名读题

  2、这道题目,已知哪些量,要求什么量?

  3、已知量与未知量之间有什么样的相等关系?(多请几位同学说一说)

  4、生独立做在课练本上。师巡视(注意辅导有困难的学生)

  5、集体核对。

  四、练习二第10、11题

  1、学生在小组内讨论这两道题目的数量。

  2、生独立解决,师注意巡视,发现问题,个别辅导。同时注意观察学生的不同做法,并通过板演在全班讨论。

  3、集体核对

  五、课堂作业

  练习二第12题

  第7课时  整理与练习(1)

  教学内容:教科书第12页~13页“回顾与整理”“练习与应用”的1~4题。

  教学目标:1、通过整理,让学生把本单元的知识进行系统的梳理,形成知识的体系,进一步理解本单元的重点和难点。

  2、通过练习,提高学生解方程的正确率和速度。

  3、提高学生小组合作学习的能力。

  教学过程:

  一、回顾与反思

  提问:这一单元我们学习了哪些内容?

  引导学生说出:方程、等式的性质、解方程。

  方程:含有未知数的等式叫作方程。

  等式的性质:等式两边同时加上或减去同一个数,所得的结果仍然是等式。

  等式两边同时乘或除以同一个不等于0的数,所得的结果仍然是等式。

  解方程:求方程未知数值的过程,叫做解方程。

  学生独立思考问题:

  1、举例说一说等式和方程有什么联系和区别。

  2、等式有哪些性质?你是怎样解方程的?

  3、在列方程解决实际问题时你是怎样想的?

  小组内逐一交流这3个问题,有组长组织。

  全班交流。

  二、练习与应用

  第2题

  学生独立完成。

  选3题让学生说出想的过程。

  帮有错的学生订正。

  第3题

  学生独立完成。

  小组交流这4题的方程和解题过程,没有意见的就通过。

  全班交流:

  (1)交流有困惑的地方。

  (2)交流有不同意见的题目。

  4x=10

  1.6x=5.6

  x+7=17

  x+110=250

  三、课堂作业

  练习与应用的第1、4题。

  第8课时    整理与练习(2)

  教学内容:练习与应用的第5~7题,“探索与实践”的题目。

  教学目标:1、通过练习,提高学生列方程解决问题的意识和能力。

  2、让学生通过实践,在解决问题的过程中培养学生发现问题、解决问题

  的能力。

  教学过程:

  一、探索与实践

  出示第8题题目。

  指导学生理解题目:“连续的3个自然数”是什么意思?举个例子说说。

  学生独立思考这3个问题,在本子上适当记录。

  小组内交流,把困惑、疑点、不同意见的地方记录下来。

  (1)a+b+c的和等于3b。

  (2)3x=99     x=33

  (3)5n=55     n=11

  很多学生在做这道题时会感到比较困难,要让有能力的学生多发表自己的见解,教师还要结合实际情况多举例来说明它们之间的关系。

  补充:依此类推,9个连续自然数的和是99,你能用方程算出中间的一个数是多少吗?

  解:设中间一个数n。

  9n=99

  n=99÷9

  n=11

  第9题

  学生读懂题目意思独立思考,解决问题。

  和同座位同学交流自己的思考过程。

  全班交流:(1)从第一个天平可看出,一个梨子的质量相当于3个苹果的质量。

  (2)从第二个天平可看出,三个苹果的质量相当于6个桃的质量。

  (3)因此,一个李子的重量相当于6个桃子的质量。

  二、评价与反思

  组织学生先进行自我评价,小组交流后全班交流。

  三、课堂作业

  练习与应用的第5~7题。

《方程》教案 篇7

  教学目标:

  1、知识与技能:会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法。

  2、过程与方法:经历一元一次方程一般解法的探究过程,理解等式基本性质在解方程中的作用,学会通过观察,结合方程的特点选择合理的思考方向进行新知识探索。

  3、情感、态度与价值观:通过尝试从不同角度寻求解决问题的方法,体会解决问题策略的多样性;在解一元一次放的过程中,体验“化归”的思想。

  教学重难点:

  重点:解一元一次方程的基本步骤和方法。

  难点:含有分母的一元一次方程的解题方法。

  教学过程:

  一、新课导入:

  请同学们和老师一起解方程:

  并回答:解一元一次方程的'一般步骤和最终的目的是什么?

  二、讲授新课

  请给同学们介绍纸草书(P95)。

  问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.试问这个

  数是多少?

  并引入让同学运用设未知数的方法,列出相应的方程。

  并回答:这个方程和我们以前学习的方程有什么不同?

  同学们和老师一起完成解上述方程,并引入去分母。

  例1、

  例2、

  活动:同学们,解一元一次方程的步骤有哪些?要注意哪些?

  看一看你会不会错:

  (1)解方程:

  (2)解方程:

  典型例题:解方程:

  想一想:去分母时要注意什么问题?

  (1)方程两边每一项都要乘以各分母的最小公倍数

  (2)去分母后如分子中含有两项,应将该分子添上括号

  选一选:

  练一练:当m为何值时,整式和的值相等?

  议一议:如何解方程:

  注意区别:

  1、把分母中的小数化为整数是利用分数的基本性质,是对单一的一个分数的分子分母同乘或除以一个不为0的数,而不是对于整个方程的左右两边同乘或除以一个不为0的数。

  2、而去分母则是根据等式性质2,对方程的左右两边同乘或除以一个不为0的数,而不是对于一个单一的分数。

  课堂小结:

  (1)怎样去分母?应在方程的左右两边都乘以各分母的最小公倍数。

  有没有疑问:不是最小公倍数行不行?

  (2)去分母的依据是什么?

  等式性质2

  (3)去分母的注意点是什么?

  1、去分母时等式两边各项都要乘以最小公倍数,不可以漏乘。

  2、如果分子是含有未知数的代数式,其分子为一个整体应加括号。

  (4)解一元一次方程的一般步骤:

  布置作业:P98,习题3.3第3题

  补充作业:解方程:

  (1)

  (2)

  板书设计:

  教学反思

《方程》教案 篇8

  学习目标 :会运用代入消元法解二元一次方程组.

  学习重难点:

  1、会用代入法解二元一次方程组。

  2、灵活运用代入法的技巧.

  学习过程:

  一、基本概念

  1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。

  2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。

  3、代入消元法的步骤:

  二、自学、合作、探究

  1、将方程5x-6y=12变形:若用y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________ 。

  2、在方程2x+6y-5=0中,当3y=-4时,2x= ____________。

  3、若 的解,则a=______,b=_______。

  4、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。

  5、用代人法解方程组 ①②,把____代人____,可以消去未知数______。

  6、已知方程组 的解也是方程组 的解,则a=_______,b=________ ,3a+2b=___________。

  7、已知x=1和x=2都满足关于x的`方程x2+px+q=0,则p=_____,q=________ 。

  8、当k=______时,方程组 的解中x与y的值相等。

  9、用代入法解下列方程组:

  ⑴ ⑵ ⑶

  二、训练

  1、方程组 的解是( )

  A. B. C. D.

  2、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_____,y=______;当x、y相等时,x=______,y= _______ 。

  3、若2ay+5b3x与-4a2xb2-4y是同类项,则a=______,b=_______。

  4、对于关于x、y的方程y=kx+b,k比b大1,且当x= 时,y= ,则k、b的值分别是( )

  A. B.2,1 C.-2,1 D.-1,0

  5、用代入法解下列方程组

  ⑴ ⑵

  6、如果(5a-7b+3)2+ =0,求a与b的值。

  7、已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m

  8、若方程组 与 有公共的解,求a,b.

《方程》教案 篇9

  一、教材分析

  1、教材的地位和作用

  函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

  2、教学重难点

  重点:一次函数与二元一次方程(组)关系的探索。

  难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

  3、教学目标

  知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

  数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

  解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

  情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

  二、教法说明

  对于认知主体学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在生动活泼、民主开放、主动探索的氛围中愉快地学习。

  三、教学过程

  (一)感知身边数学

  学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

  [设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用上网收费这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成心求通而未能得,口欲言而不能说的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

  (二)享受探究乐趣

  1、探究一次函数与二元一次方程的关系

  [设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

  2、探究一次函数与二元一次方程组的关系

  [设计意图] 学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

  (三)乘坐智慧快车

  例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

  [设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:你家选择的上网收费方式好吗?再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

  (四)体验成功喜悦

  1、抢答题

  2、旅游问题

  [设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

  (五)分享你我收获

  在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

  [设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

  (六)开拓崭新天地

  1、数学日记

  2、布置作业

  [设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让不同的人在数学上得到不同的发展。

  四、教学设计反思

  1、贯穿一个原则以学生为主体的原则

  2、突出一个思想数形结合的思想

  3、体现一个价值数学建模的价值

  4、渗透一个意识应用数学的意识

  《一次函数与二元一次方程(组)》教案

  教学目标

  知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

  情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

  教学重难点

  重点:一次函数与二元一次方程(组)关系的探索。

  难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

  教学过程

  (一)引入新课

  多媒体播放一段发生在电信公司里的情景:一顾客准备办理上网业务,发现有两种收费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0.05元的价格按上网时间计费。顾客说他每月上网的费用按这两种收费方式计算都是一样多。求这位顾客打算每月上网多长时间?多少费用?

  学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

  (二)进行新课

  1、探究一次函数与二元一次方程的关系

  填空:二元一次方程 可以转化为 ________。

  思考:(1)直线 上任意一点 一定是方程 的解吗?(2)是否任意的二元一次方程都可以转化为这种一次函数的形式?

  (3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

  2、探究一次函数图像与二元一次方程组的关系

  (1)在同一坐标系中画出一次函数 和 的图象,观察两直线的交点坐标是否是方程组 的解?并探索:是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?

  此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。

  (2)当自变量 取何值时,函数 与 的值相等?这个函数值是什么?这一问题与解方程组 是同一问题吗?

  进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

  3、列一元二次不等式

  例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

  解法1:设上网时间为 分,若按方式A则收 元;若按方式B则收 元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标 ,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式A省钱;当上网时间等于400分时,选择方式A、B没有区别;当上网时间多于400分时,选择方式B省钱。

  解法2:设上网时间为 分,方式B与方式A两种计费的差额为 元,得到一次函数: ,即 ,然后画出函数的图象,计算出直线与 轴的交点坐标,类似地用点位置的高低直观地找到答案。

  注意:所画的函数图象都是射线。

  4、习题

  (1)、以方程 的解为坐标的所有点都在一次函数 _____的图象上。

  (2)、方程组 的解是________,由此可知,一次函数 与 的图象必有一个交点,且交点坐标是________。

  5、旅游问题

  古城荆州历史悠久,文化灿烂。

  今年,大型历史剧《万历首辅张居正》在荆州封镜后,来荆州的游客更是络绎不绝。据悉,张居正纪念馆门票标价20元/张,近期正在进行优惠活动,购买时有两种方式:方式A是团队中每位游客按8折购买;方式B是团队中除5张按标价购买外,其余按7折购买。如果你是团队的负责人,你会如何选择购买方式使整个团队更合算?

《方程》教案 篇10

  一、学习目标

  1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

  2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。

  二、重点:

  解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。

  难点:去分母法则的正确运用。

  三、学习过程:

  (一)、复习导入

  1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)

  2、回顾:解一元一次方程的一般步骤及每一步的依据

  3、(只列不解)为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_____棵。

  (二)学生自学p99--100

  根据等式性质,方程两边同乘以,得

  即得不含分母的方程:4x-3x=960

  X=960

  像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是

  (三)例题:

  例1解方程:

  解:去分母,得依据

  去括号,得依据

  移项,得依据

  合并同类项,得依据

  系数化为1,得依据

  注意:

  1)、分数线具有

  2)、不含分母的项也要乘以(即不要漏乘)

  讨论:小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正。

  (1)方程去分母,得

  (2)方程去分母,得

  (3)方程去分母,得

  (4)方程去分母,得

  通过这几节课的学习,你能归纳小结一下解一元一次方程的一般步骤吗?

  解一元一次方程的一般步骤是:

  1.依据;

  2.依据;

  3.依据;

  4.化成的形式;依据;

  5.两边同除以未知数的系数,得到方程的解;依据;

  四、小结:

  谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。

  五、课堂检测:

  1、去分母时,在方程的左右两边同时乘以各个分母的_____,从而去掉分母,去分母时,每一项都要乘,不要漏乘,特别是不含分母的项,注意含分母的项约去分母分子必须加括号,由于分数线具有

  2、解方程

  (1)2x+5=5x-7

  (2)4-3(2-x)=5x

  六、作业

  P102:3,10.

《方程》教案 篇11

  教学目标:

  1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

  2、会用待定系数法求圆的标准方程。

  教学重点:圆的标准方程

  教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。

  教学过程:

  (一)、情境设置:

  在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

  探索研究:

  (二)、探索研究:

  确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

  化简可得:②

  引导学生自己证明为圆的方程,得出结论。

  方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

  (三)、知识应用与解题研究

  例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

  分析探求:可以从计算点到圆心的距离入手。

  探究:点与圆的关系的判断方法:

  (1)>,点在圆外

  (2)=,点在圆上

  (3)0

  得:y=

  ≈14.36-10.5=3.86 (M)

  答:支柱A2P2的长度约为3.86M。

  Ⅳ.课堂练习、课时小结

  课本P77练习2,3

  师:通过本节学习,要求大家掌握圆的标准方程,理解并掌握切线方程的探求过程和方法,能运用圆的方程解决实际问题.

  Ⅴ.问题延伸、课后作业

  (一)若P(xo,yo)在圆(x-a)2+(y-b)2= r2上时,?求过P点的圆的切线方程。

  课本P81习题7.7 : 1,2,3,4

  (二)预习课本P77~P79

《方程》教案 篇12

  1.教学目标

  (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

  3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为 ①

  把①式两边平方,得(x―a)2 (y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的方程写出圆心和半径

  (1) ; (2) .

  ii.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

  (五)小结反思(拓展引申)

  1.课堂小结:

  (1)圆心为c(a,b),半径为r 的圆的标准方程为:

  当圆心在原点时,圆的标准方程为:

  (2) 求圆的方程的方法:①找出圆心和半径;②待定系数法

  (3) 已知圆的方程是 ,经过圆上一点 的切线的方程是:

  (4) 求解应用问题的一般方法

  2.分层作业:(a)巩固型作业:课本p81-82:(习题7.6)1.2.4

  (b)思维拓展型作业:

  试推导过圆 上一点 的切线方程.

  3.激发新疑:

  问题七:1.把圆的标准方程展开后是什么形式?

  2.方程: 的曲线是什么图形?

  教学设计说明

  圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.

  本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想。应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维.提高了能力、培养了

  文章来源自3edu教育网兴趣、增强了信心

《方程》教案 篇13

  一 内容和内容解析

  1.内容

  二元一次方程, 二元一次方程组概念

  2.内容解析

  二元一次方程组是解决含有两个提供运算未知数的问题的有力工具,也是解决后续一些数学问题的基础。直接设两个未知数,列方程,方程组更加直观,本章就从这个想法出发引入新内容.

  本节课一以引言中的问题开始,引导学生思考“问题中包含的等量关系”以及“设两个未知数后如何用方程表示等量关系”.继而深入探究二元一次方程, 二元一次方程组的解.

  本节课的教学重点是:二元一次方程, 二元一次方程组的概念

  二、目标和目标解析

  1.教学目标

  (1)会设两个未知数后用方程表示等量关系列二元一次方程, 二元一次方程组.

  (2)理解解二元一次方程, 二元一次方程组的解的概念.

  2. 教学目标解析

  (1)学生能掌握设两个未知数后,分析问题中包含的等量关系”以及“用方程表示等量关系”.

  (2)要让学生经历探究的过程.体会二元一次方程组的解, 二元一次方程组的解是实际意义.

  三、教学问题诊断分断

  1.学生过去已遇到二元问题,但只设一个未知数,再表示出另一个未知数,用一元一次方程解决. 现在如何引导学生设两个未知数。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现一元一次方程向二元一次方程组转化的思路

  2.结合一元一次方程的解向二元一次方程, 二元一次方程组的解转化,学习知识的迁移.

  本节教学难点:

  1.把一元向二元的转化,设两个未知数.结合实际问题进行分析,列二元一次方程, 二元一次方程组.

  2.二元一次方程组的解的意义

  四、教学过程设计

  1.创设情境,提出问题

  问题1 篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?

  师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16

  x=6,则胜6场,负4场

  教师追问:你能根据两个问题中的等量关系设两个未知数列出二个反映题意的方程吗?

  师生活动:学生回答:能。设胜x场,负场。根据题意,得x+=10 , 2x+=16.

  教师归纳:像这样,每个方程都含有两个未知数(x和)并且含有未知数的项的次数都是1的方程叫做二元一次方程。

  设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,转变思路,再列二元一次方程,为后面教学做好了铺垫.

  问题2:对比两个方程,你能发现它们之间的关系吗?

  师生活动:通过对实际问题的分析,认识方程组中的两个x,都是这个队的胜,负场

  数,它们必须同时满足这两个方程,这样,连在一起写成

  就组成了一个方程组 。这个方程组中每个方程都含有两个未知数(x和)并且含有未知数的项的次数都是1,像这样的方程组叫做二元一次方程组 。

  设计意图:从实际出发,引入方程组的概念,切合学生的认知过程。

  问题3 : 探究

  满足了方程①,且符合问题的实际意义的x,的值有哪些?把它们填入表中

  x

  (3) 当 =12时,x的值

  师生活动:小组讨论,然后每组各派一名代表上黑板完成.

  设计意图:借助本题,充分发挥学生的合作探究精神通过比较,进一步体会二元一次方程及二元一次方程的解的意义.

  3加深认识,巩固提高

  练习: 一条船顺流航行,每小时行20 ,逆流航行,每小时行16 .求船在静水中的速度和水的流速。

  师生活动:分两小组讨论.一组用一元一次方程解决,另一组尝试列方程组(不要求求解),为解二元一次方程组埋下伏笔。然后每组各派一名代表上黑板完成。

  设计意图:提醒并指导学生要先分析问题的两个未知数关系,尝试结合题意,寻找到两个等量关系,列方程组。体会直接设两个未知数,列方程,方程组更加直观,

  4归纳总结

  师生活动:共同回顾本节课的学习过程,并回答以下问题

  1.二元一次方程, 二元一次方程组的概念

  2.二元一次方程, 二元一次方程组的解的概念.

  3.在探究的过程中用到了哪些思想方法?

  4.你还有哪些收获?

  设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.

  5. 布置作业

  教科书第90页第3,4题

  五、目标检测设计

  1.填表,使上下每对x,的值是方程3x+=5的解

  x

  2.选择题

  二元一次方程组的解为( )

  A. B. C. D.

  设计意图:考查学生二元一次方程组的解的掌握情况.

《方程》教案 篇14

  教学目标知识技能

  1、会根据问题情境及条件列出分段计费及盈不足等问题的二元一次方程组,并能检验解的合理性;

  2.通过解决实际问题进一步体会方程建模的过程和作用.

  数学思考经历和体验列方程组解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.

  问题解决让学生进一步经历和体验列方程组解决实际问题的过程,培养学生的数学应用能力.

  情感态度通过对问题的解决,进一步认识数学与现实世界的密切联系,培养学生必要的经济意识,增强他们节约成本、有效合理利用资源的意识,培养学生的数学应用意识,提高学习数学的趣味性、现实性、科学性.

  教学重点抽象出数学模型,引导学生参与讨论和探究问题.

  教学难点将实际问题转化成二元一次方程组的数学模型.

  授课类型新授课课时

  教具多媒体课件

  教学活动

  教学步骤师生活动设计意图

  活动一:创设情境导入新课

  【课堂引入】1.某旅行社在黄金旅游期间为一个旅游团安排住宿,若每间宿舍住5人,则有4人住不下;若每间宿舍住6人,则有一间只住了4人,且空两间宿舍,那么该旅游团有多少人?有多少间宿舍?图1-3-72.上节课我们学习了列二元一次方程组解应用题的一般步骤,并学习了行程问题,百分比问题的解决思路,这节课我们一起来学习分段计费、盈不足问题的解决方法.利用同学们熟悉的生活中的问题去激发学生学习本节课的兴趣,导入课题.

  活动二:实践探究交流新知

  【探究1】分段计费问题某城市规定:出租车起步价所包含的路程为0~3 km,超过3 km的部分按每千米另收费.甲说“我乘这种出租车走了11 km,付了17元.”乙说:“我乘这种出租车走了23 km,付了35元.”请你算一算:出租车的起步价是多少元?超过3 km后,每千米的车费是多少元?阅读后思考回答:问题1:由甲乘车付费可以得到一个什么样的等量关系?由乙乘车付费又可以得到一个什么样的等量关系?问题2:在这两个等量关系中,未知量有几个?各小组成员共同讨论,探讨已知与未知,并探讨设元的方法.问题3:你能通过设元列出二元一次方程组吗?试试看.解:设出租车的起步价是x元,超过3 km后每千米收费y元.根据等量关系,得解得答:这种出租车的起步价是5元,超过3 km后每千米收费1.5元.归纳总结:分段计费的常见等量关系是:总费用=各分段费用之和.

  【探究2】盈不足问题把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少名学生?问题1:“若每人分3本,则剩余20本”,你怎样理解这句话?如果设这个班有x名学生,根据这句话,你能用含x的代数式表示书本数吗?同样地,“若每人分4本,则还缺25本”又如何理解?你能用含x的代数式表示书本数吗?问题2:你能用列一元一次方程求解这道题吗?试试看.问题3:如果需要列二元一次方程组求解本题,你认为应该如何设元?如何列方程组?小组内合作,共同交流,提出各自的解法,然后讨论.归纳总结:盈不足问题常见的处理方法是:用一个未知数的代数式表示另一个量,再根据同一个量的两种不同表示方法,列一元一次方程求解;也可直接列二元一次方程组求解.解法一:设这个班有x名学生.根据题意,得3x+20=4x-25.解得x=45.答:这个班共有45名学生.解法二:设这个班有x名学生,图书一共有y本.根据题意,得解得答:这个班共有45名学生.通过合作探究,使学生初步学会设计适当的图表,帮助理清题目中的数量关系,从而提高学生分析问题和解决问题的能力.在实际问题的解决过程中,进一步提高学生解方程组的技能.

  活动三:开放训练体现应用

  【应用举例】例1用一根绳子环绕一个圆柱形油桶,若环绕油桶3周,则绳子还多4尺;若环绕油桶4周,则绳子又少了3尺.这根绳子有多长?环绕油桶一周需要多少尺?解:设这根绳子长为x尺,环绕油桶一周需y尺.由题意,得解得答:这根绳子长为25尺,环绕油桶一周需7尺.变式训练1.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.则敬老院有多少位老人?2.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,请问共有多少个小朋友?( )A.4个B.5个C.10个D.12个3.为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”.电力公司规定:居民家庭每户每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭每户每月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家20xx年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时.(2)若6月份小张家预计用电130千瓦时,请预计小张家6月份应上缴的电费.解:(1)设“基本电价”为x元/千瓦时,“提高电价”为y元/千瓦时.根据题意,得解得答:“基本电价”为0.6元/千瓦时,“提高电价”为1元/千瓦时.(2)80×0.6+(130-80)×1=98(元).答:预计小张家6月份上缴的电费为98元.通过应用举例,及时反馈学生的学习情况,并及时地查缺补漏,进一步提升教学效果.进一步体会此类问题的解决方法,并能灵活解题.

  解:(2)由(1)可列方程组解得3+6=9(千米).答:他家到海滨9千米.除巩固课堂所学知识外,也给学生创造了一个知识迁移及拔高的机会,使学生各抒己见,并培养学生分析问题、解决问题的能力.

  活动四:课堂总结反思

  【当堂训练】七年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排.这间会议室共有座位多少排(C)A.14 B.13 C.12 D.152.若某班购买一筐桃,每人分6个,则少6个,每人分5个,则多5个,则班级人数与桃数各是(B)A.22,120 B.11,60 C.10,54 D.8,423.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何”.诗句中谈到的鸦为__20__只,树为__5__棵.练习题的设置一方面加强学生对知识的掌握,从而提高对知识的运用能力;另一方面可以查缺补漏,为以后教师的教和学生的学指明方向.

  【课堂总结】布置作业:1.教材P18练习T1,T2.2.教材P18习题1.3A组T3,B组T7. 布置作业,专题突破.

  活动四:课堂总结反思

  【教学反思】

  ①[授课流程反思]从生活中常见的事例入手,引起学生的注意,同时也为学生今后的学习做铺垫.

  ②[讲授效果反思]通过设问的形式,引导学生理解题意,帮助学生分清已知和未知,掌握本课时内容,突破难点.

  ③[师生互动反思]课堂上教师真正发挥学生的主体地位,特别是遇到较难解决的问题时,可让同学们分组探究、归纳总结,同时,加强学生之间的相互评价.

  ④[习题反思]好题题号____________________________________________错题题号____________________________________________

《方程》教案 篇15

  教学目标

  1.使学生会用加减法解二元一次方程组。

  2.学生通过解决问题,了解代入法与加减法的共性及个性。

  重点:探寻用加减法解二元一次的方程组的进程。

  难点:消元转化的过程

  教学方法:讲练结合、探索交流课型新授课教具投影仪

  教师活动:学生活动

  情景设置:

  小明买了两份水果,一份是3kg苹果、2kg香蕉,共用去13.2元;另一份是2kg苹果、5kg香蕉,共用去19.8元。设苹果x元/kg,香蕉y元/kg.列出方程。

  新课讲解:

  列出方程组

  1.解方程组

  分析:关键的出方程〈1〉中的2y与方程〈2〉中的-2y互为相反数。想象出如果相加两个方程,会是什么结果?

  板演:

  解:〈1〉+〈2〉得:

  4x=6

  x=

  把x= 代入〈1〉得

  +2y=1

  解出这个方程,得

  y=

  所以原方程组的解是

  2.解方程组

  通过议一议,让学生都有感觉消去含x或y的项都可以,但哪个更简便?

  解:〈1〉 3,得

  15x-6y=12 〈3〉

  〈2〉 2,得

  4x-6y=-10 〈4〉

  〈3〉-〈4〉,得

  11x=22

  x=2

  将x=2代入〈1〉,得

  5 2-2y=4

  y=3

  所以原方程组的解是

  加减消元法:把方程组的两个防城(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程。

  练一练:

  解方程组

  小结:

  加减消元法关键是如何消元,化二元为一元。

  先观察后确定消元。

  教学素材:

  A组题:解下列方程组:

  (1)

  (2)

  (3)

  (4)

  (5)

  B组题:运用转化的思想方法,你能解下面的三元一次方程组吗?

  (1)

  (2)

  学生读题,议一议

  学生想一想,如感到困难则看道简单题。

  由学生观察,如何求出x,y的值,学生再讨论。

  试一试。学生口述。

  老师板演

  得到一元一次方程

  学生再观察,议一议

  ①消去哪个未知数

  ②怎样消去?

  P112 1(1)(2)(3)(4)

  作业习题11.3 P112 1(3)(4) 3 , 4

《方程》教案 篇16

  一、教学目标

  1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是二元一次方程;

  2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;

  3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

  过程与方法目标:

  经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;

  情感与态度目标

  1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;

  2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

  二、重点、难点

  重点:二元一次方程的概念及二元一次方程的解的概念。

  难点

  1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,但不是任意的两个数是它的解。

  2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

  三、教学方法与教学手段

  1、 通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

  2、 通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

  3、 通过学练结合,以游戏的形式让学生及时巩固所学知识。

  四、教学过程

  创设情境 导入新课

  1、一个数的3倍比这个数大6,这个数是多少?

  2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?

  思考:这个问题中,有几个未知数?能列一元一次方程求解吗?如果设黄卡取x张,蓝卡取y张,你能列出方程吗?

  3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?

  师生互动 探索新知

  1、 发现新知

  引导学生观察所列的方程: 这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?

  根据它们的共同特征,你认为怎样的方程叫做二元一次方程? (二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)

  2、 巩固新知

  判断下列各式是不是二元一次方程(1) (2) (3) (4)

  3、师生互动 再探新知

  (1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)

  (2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。)

  若未知数设为,记做 ,若未知数设为,记做

  4、 检验新知

  (1)检验下列各组数是不是方程 的解:(学生感悟二元一次方程解的不唯一性)

  (2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)

  5、自我挑战 三探新知

  有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x ,黄卡上的数字为y ,根据题意列方程。

  请找出这个方程的一个解,并写出你得到这个解的过程。

  学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。

  五、 总结

  比较一元一次方程和二元一次方程的相同点和不同点

  相同点: 方程两边都是整式,含有未知数的项的次数都是一次。

  如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。

《方程》教案 篇17

  教学目标

  1.会用加减法解一般地二元一次方程组。

  2.进一步理解解方程组的消元思想,渗透转化思想。

  3.增强克服困难的勇力,提高学习兴趣。

  教学重点

  把方程组变形后用加减法消元。

  教学难点

  根据方程组特点对方程组变形。

  教学过程

  一、复习引入

  用加减消元法解方程组。

  二、新课。

  1.思考如何解方程组(用加减法)。

  先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?

  能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

  学生解方程组。

  2.例1.解方程组

  思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?

  学生讨论,小组合作解方程组。

  提问:用加减消元法解方程组有哪些基本步骤?

  三、练习。

  1.P40练习题(3)、(5)、(6)。

  2.分别用加减法,代入法解方程组。

  四、小结。

  解二元一次方程组的加减法,代入法有何异同?

  五、作业。

  P33.习题2.2A组第2题(3)~(6)。

  B组第1题。

  选作:阅读信息时代小窗口,高斯消去法。

  后记:

  2.3二元一次方程组的应用(1)