首页数学教案小学五年级数学教案《小数的性质》教案(精选15篇)

《小数的性质》教案(精选15篇)


《小数的性质》教案(精选15篇)

《小数的性质》教案 篇1

  教学内容:

  p。34—35的例5、例6及相应的试一试,练一练,完成练习六的第1—5题

  教学目标:

  1、使学生在建立猜想、验证猜想以及比较、归纳等活动中,理解小数的性质,会应用小数的性质化简或改写小数。

  2、使学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的'经验,发展数学思考的能力。

  教学重点:

  1、发现小数的性质并对小数的性质作出抽象概括。

  2、理解小数的性质,会应用小数的性质解决问题。

  教学难点:

  理解小数的性质,会应用小数的性质解决问题

  教具准备:

  教学挂图、课件

  教学过程:

  一、复习引入

  1、在下面里填适当的小数。

  0。40里面有个0。01

  3角=元

  30分=元

  二、体验发现,理解性质

  1、出示例5:指名读题,分组讨论。

  思考:小数部分末尾的0添上或去掉,什么变了,什么没变?

  2、完成试一试:

  (1)学生自主填空。交流自己的看法,并阐明观点。

  (2)汇报自己的结果。

  (3)观察板书:你得到什么结论?学生自由发言。

  三、理解内涵,学会应用。

  1、课件出示例6:这些小数中,哪些0可以去掉?指名回答。学生自主填空。学生尝试做练一练第1题。独立完成,集体订正。

  2、试一试。给学生充分的交流时间。

  四、巩固练习

  五、小结

  《小数的性质及比较大小》

《小数的性质》教案 篇2

  教学内容

  教科书第80~81页,练习十六的习题.

  教学目的

  1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别.掌握能被2、5、3整除的数的特征.会分解质因数.会求最大公约数和最小公倍数.

  2.使学生在理解的基础上掌握分数、小数的基本性质.

  教学过程

  一、数的整除

  1.整除的意义.

  教师:想一想,什么叫做整除?指名回答.

  教师进一步强调:整除中说的数是什么数?(整数.)

  商是什么数?(整数.)有没有余数?(没有余数.)

  教师:什么叫做除尽?(两数相除,余数是0.)

  整除和除尽有什么联系和区别?指名回答.教师根据学生的回答,整理出下表:

  被除数 除数 商 余数

  整除 整数 不等于O的整数 整数 O

  除尽 数 不等于O的数 数 O

  教师:可以看出整除是除尽的一种特殊情况.

  2.能被2、5、3整除的数的特征.

  教师:我们已经学过能被2、5、3整除的数的特征,同学们还记得吗?指名说一说.然后提问:

  能被2、5整除的数,在判别方法上有什么共同的地方?(都根据个位数进行判别.)

  能被3整除的数,在判别方法上与能被2、5整除的数有什么不同?气根据各个数位上的数之和进行判别.)

  教师:什么叫做奇数?什么叫做偶数?

  根据什么来判断一个数是奇数还是偶数?

  3.约数和倍数.

  教师:根据整除的概念可以得到约数和倍数的概念.什么叫做约数?什么叫做倍数?指名说一说.(如果a能被b整除,a就叫做b的倍数,b就叫做a的约数.)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:

  能说6是约数,15是倍数吗?应该怎么说?

  教师说明:在研究约数和倍数时,我们所说的`数一般只指自然数,不包括0.

  教师:一个数的约数的个数是怎样的?(有限的.)

  其中最小的约数是什么数?最大的约数是什么数?(1,这个数本身.)

  一个数的倍数的个数是怎样的?(无限的.)

  其中最小的倍数是什么数?(这个数本身.)

  做练习十六的第2题.让学生直接做在书上.教师可以说明做的方法:在含有约数2的数下面写2,在3的倍数下面写3,在能被5整除的数下面写5,然后再进行判断.集体订正.

  4.质数和合数.教师指名说一说质数、合数的概念.可有意识地让学习有困难的学生说,其他同学进行补充.

  教师:怎样判断一个数是质数还是合数?(检查这个数有约数的个数,或查质数表.)指名说一说30以内有哪些质数.

  让学生进行判断:一个自然数如果不是质数,那么一定是合数.学生判断后,教师说明:1既不是质数,也不是合数.

  5.分解质因数.

  指名说一说质因数、分解质因数的含义.

  做练习十六的第5题.学生独立解答,教师巡视,集体订正.

  6.公约数、最大公约数和公倍数、最小公倍数.

  (1)复习概念.

  教师:什么叫做公约数?什么叫做最大公约数?(几个数公有的约数,叫做这几个数的公约数;其中最大的一个叫做这几个数的最大公约数.)怎样求几个数的最大公约数?让学生举例说明.

  什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?让学生举例说明.

  教师:什么样的数叫做互质数?(公约数只有1的两个数叫做互质数.)

  质数和互质数有什么区别?(质数是一个数,只有1和它本身两个约数;互质数是两个数,只有公约数1.)

  两个不同的质数一定互质吗?(两个不同的质数一定互质.)

  互质的两个数一定都是质数吗?(不一定,如4和9互质,4、9都是合数.)

  (2)课堂练习.

  做练习十六的第1题.先让学生独立判断,集体订正时,让学生说一说判断的理由.

  做练习十六的第4题.学生独立解答,教师巡视,集体订正.教师根据前面的教学,整理出教科书第80页的概念联系图.也可以把该图变化成如下形式.

《小数的性质》教案 篇3

  小数的性质是小数四则运算的基础。根据小数的性质,可以化简小数,也可以不改变小数的大小,在小数末尾添上一个或几个“0”,或者把整数改写成小数的形式。在教学设计中,我采用让学生合作探究的形式,学生通过动手、动口、动脑,联系生活与实践来学习数学,经过教学实践,取得良好的效果。具体教学如下:

  一、创设开放式问题情境,激发兴趣,让学生成为发现者。

  教育心理学认为:学生的精神世界有一种强烈的要求——自己是探索者、发现者。为探究新知,我创设的认识冲突,目的在于迎合学生“好奇”、“好胜”的心理需求,把学生引入“未知—已知—未知—已知”的思维境界,所以在新课的导入,我联系生活实际,让学生感知小数的性质在生活中的运用。

  上课开始,我对学生说:“同学们,前几天,老师去超市买毛巾和手套。发现了一个奇怪的现象:第一个超市毛巾、手套的标价分别是6.5元、8元;第二个超市毛巾、手套的标价分别6.50元,8.00元,你能告诉老师该买哪个超市的毛巾和手套吗?既然两个超市的毛巾和手套价格一样,为什么写法却不一样呢?”通过这样设疑,让学生发现了问题,激发了学生强烈的研究兴趣。这样既培养了学生的创造性思维,又为他们创设了一个主动探索和追求成功的意境,体现数学自身的乐趣。

  二、开放合作式教学过程,主体主动参与,让学生成为研究者。

  开放式课堂教学的核心是使学生成为学习的主人,让他们主动参与到知识的形成过程中去,自主合作学习,体验研究与成功的乐趣。为此,我设计三个层次:第一层次先请全班学生用手势比划一个新生婴儿的身长?再让学生猜一猜哪位医生说得对?

  第一位医生说:“婴儿身长0.5米。”

  第二位医生说:“婴儿身长0.50米。”

  第三位医生说:“婴儿身长0.500米。”

  最后让学生拿出示先准备的米尺小组合作讨论、验证。

  学生在上述讨论、观察、感知、验证的基础上,初步了解小数的数位增加了,但小数的大小却没有变。

  第二层次:每位学生出示先准备的两个大小一样的正方形,分别涂出它的0.3和0.30,从中你发现了什么?

  学生通过动手实践,发现了0.3=0.30,感受到了成功的喜悦后,我继续引导学生:0.3=0.30从左往右观察你发现了什么?从右往左观察你发现了什么?你能把这两个规律合成一句话吗?

  第三层次:为了使学生更好地理解,运用小数的性质,我设计了两个基础练习:一是有关小数性质概念的判断题;二是思考一些具体的数末尾的“0”能否去掉。

  这三个层次的教学,我为学生提供了一个思考与合作,交流与创新的空间,充分调动了学生的积极性,让学生感受到学习数学的乐趣。

  三、着眼知识的应用过程,完善知识的形成过程。

  学生经过实践得到了理论的认识,还必须回到实践中去。在发生、发展中认识真理,在应用过程中检验和发展真理。故此,我让学生带着思考题自学小数性质的作用,并解决课前提出的问题,完成知识的形成过程。

  四、组织形式多样的练习,让学生享受数学思维的快乐。

  围绕小数性质的内容,我组织多种形式的练习加强学生对小数性质的理解运用。最后,我让学生玩一个游戏:每位学生手中都发有一张卡片,卡片上写有不同位数的小数;老师宣读数,持有与宣读的数相等的卡片数的同学们互为朋友,一同去操场活动。

  通过离场的游戏,我让学生在积极思维的状态中,结束新课,让每一个学生学习到不同的数学,享受到不同的成功。

  这一节课,学生在一系列探究活动中,学习兴趣浓厚,参与面广,理解和掌握了小数的性质,并会应用小数的性质解决一些问题。让学生通过质疑、讨论、猜测、观察、实践等活动感受到知识的内在联系,经历了“做”数学的过程,体验了数学发现的乐趣和艰辛,获得了积极良好的情感体验,并获得从事数学探究活动的经验。

《小数的性质》教案 篇4

  教学目标

  1、引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写。

  2、培养学生的动手操作能力以及观察、比较、抽象和归纳概括的能力。

  3、培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点。

  教学重点

  让学生理解并掌握小数的性质。

  教学难点

  能应用小数的性质解决实际问题。

  教学过程

  一、激趣导入

  1、小组交流“商品标价记录单”,请两名学生上来展示。

  2、电脑出示1:某超市手套、毛巾的标价,导入新课。

  (在某超市商店里,老师看到:手套每双2.50元,毛巾每条2.5元。这里的2.50元、2.5元分别是( )元( )角,它们的价钱相同,为什么写法可以不同呢?这是小数的一个重要性质,是我们今天要学习的内容,并板书“小数的性质”。)

  3、揭示学习目标。

  问:看到“小数的性质”这个课题,你认为这节课我们要学习什么内容?(结合学生回答,板书“性质”、“应用”)

  二、探究新知

  (一)理解小数的性质

  1、做一做 做一做 1,得出 0.30=0.3

  做一做 2,得出0.6=0.60=0.600

  2、引导观察(思考讨论)0.6=0.60=0.600

  (1)从左往右看,小数末尾有什么变化?小数大小有什么变化? (2)从右往左看,小数末尾有什么变化?小数大小有什么变化?你能得出什么结论?

  (启发学生归纳出:在小数的末尾填上“0”,小数的大小不变;在小数的末尾去掉“0”,小数的大小不变。)

  3、归纳小数的性质:

  通过研究,你能把上面的两个结论归纳成为一句话吗?

  教师概括:在小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。

  (在整数的末尾添上或去掉“0”,整数的大小会有什么变化?)

  4、辨别:下面各数中的“

  0”,哪些“0”是属 于小数末尾 的“0”。

  (电脑显示)

  (二)小数的性质应用

  (1)教学例1。

  ①设问导入。问:你认为小数的性质有什么作用?学生很容易回答出小数性质的第一个作用。教师强调,根据这个性质,遇到小数末尾有0的`时候,一般地可以去掉末尾的0,把小数化简。 (板书“化简”)

  ②投影出示例1,让学生尝试练习。

  把0.90和205.0800化简

  思考:哪些“0”可以去掉,哪些“0”不能去掉?

  205.0800中“8”前面的“0”为什么不能去掉?

  (0.90=0.9;205.0800=205.08 )

  完成“练一练” 第1题

  (2)教学例2。

  ①让学生解答导入新课中提出的问题,结合学生回答,教师说明:利用小数的性质,根据需要可以“把一个数改写成具有指定小数位数的小数”。(板书“改写”)

  ②投影出示例2,学生尝试练习。

  不改变数的大小,把0.3、4.06、8改写成小数部分是三位的小数。

  (0.3=0.300; 4.06=4.060; 8=8.000)

  思考:“8”的后面不加小数点行吗?为什么?

  完成“练一练” 第2题

  ③ 讨论:改写小数时一定要注意什么?

  改写小数时一定要注意下面三点: A.不改变原数的大小; B.只能在小数的末尾添上0; C.把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添0 。

  (三)学生看书质疑。

  三、巩固练习

  1、练习十七 第1题

  重点指导学生说一说为什么有些“0”不能去掉的。

  2、练习十七 第2题

  重点指导学生说一说为什么有些数的末尾添上“0”,原数就发生了变化。

  3、综合练习 (电脑显示)

  四、课末回顾、反思

《小数的性质》教案 篇5

  各位领导:

  你们好!

  今天我说课的题目是《小数的性质》,本课时是青岛版教材数学四年级上册第三单元蛋的世界——小数的意义和性质信息窗二第二课时的内容,是在学生对小数和分数有了初步认识并且学习了小数的意义、小数的大小比较的基础上进行学习的,是深入学习小数有关知识的开始。学好这部分知识可以为今后学习“分数的基本性质”、“比的基本性质”等规律性较强的知识打下一个比较好的铺垫。

  根据《数学课程标准》要求和对教材内容理解、分析,我将本节课的教学目标定位为:

  1、让学生在现实的情景中通过猜想、验证以及比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质化简或改写小数。

  2、让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。

  3、激发学习数学的兴趣,体验数学问题的探究性和挑战性。

  教学重点:让学生理解并掌握小数的性质,并能应用小数的性质解决实际问题。。

  教学难点:理解小数性质归纳的过程

  教具、学具准备:直尺、正方形纸片,多媒体课件

  课程标准告诉我们,数学学习过程应引导学生主动地进行观察、实验、猜测、验证、推理与交流,而“动手实践、自主探索与合作交流”应成为学生学习数学的重要方式。因此,我设计了如下的教法与学法。

  1、以学生活动为主体。通过多种形式的学生活动,促使学生动手、动脑、动口参与学习活动。

  2、体现规律形成的全过程。教学中,教师不是简单的奉送结论,而是在展示知识的发生、发展过程中引导学生自己去观察、猜测、操作、验证,发现、分析、归纳和巩固运用。

  3、坚持面向全体,以学生发展为本。教学中兼顾到不同层次的学生,尽最大的努力体现因材施教,促进学生个性发展,并在空间、时间上为学生提供发展的充分条件。

  基于以上对教材教法的分析,我设计了以下几个教学环节:

  一、 创设情景,引发兴趣

  以超市购物的话题引入,让学生根据信息提出关于小数大小比较的问题,引导学生猜测“铅笔和橡皮,哪一个贵?”,这样设计,不仅让学生复习上课时的内容,而且从学生的生活经验入手,使学生切身体会数学来源于生活,感受数学与生活的密切联系,引发学生的探究欲望,为主动探究新知识聚集动力。

  二、 猜想验证,探究性质

  本环节我设计以下几个层次:

  1、小组合作,初步感知 在猜测0。9=0。90的基础上,引导学生质疑:你的猜想正确吗?小组合作,选择喜欢的工具,通过量一量,涂一涂,验证自己的猜想。然后让学生“观察等号左右两边的小数,你有什么发现吗?”(先留给学生充分的时间独立思考,然后小组内交流)(引导出小数的末尾有没有0,小数的大小一样。)

  这样设计把问题放到小组中,让学生在讨论的基础上找到解决问题的方法。教师参与活动,以合作者的身份与学生平等相处,提出自己的看法,尊重学生的意见,鼓励学生大胆动手量一量、涂一涂进行验证,培养学生敢于表达见解的精神,充分调动学生的积极性。

  2、举例验证,总结性质初步验证的基础上,引导学生进一步质疑“我们的猜想是不是对所有的小数都适用?”,组织学生进行举例,然后小组合作验证,全班交流,最后引导学生“观察这些数据,你有什么发现?”,通过交流,总结板书:小数的末尾添上0或者去掉0,小数大小不变。(板书课题:小数的性质)这样,让学生在初步发现规律之后,举例验证,体现了从特殊到一般的思维过程,不仅让学生初步学会了举例验证的方法,而且体现了辨证唯物主义的思想。

  本环节意在尽可能多地提供机会让学生在实践操作中学习,引导学生通过动手实践、自主探究,在观察、实验、猜测、验证、推理与交流的数学活动中,初步理解和掌握小数的性质。

  3、利用性质,体会价值

  本环节设计让学生初步应用小数的性质对小数进行化简改写,先让学生独立完成题目,在这个过程中,设置关键性问题“这个0可以去掉吗?”“怎样把5改写成三位小数呢?”要引导学生重点理解“13。040中间的0为什么不能去掉”“把5变成小数后为什么要在它的右下角加上小数点”,为学生提供充足的独立思考和合作探索的时间和空间,使学生在解决问题的过程中加深对小数性质的理解,体会小数性质的价值。

  三、练习反馈,巩固内化

  本环节设计三个层次的题目,包括基本题,综合题和拓展题。基本题的设计面向全体,使每个学生都能巩固基本的方法和技能,综合题关注差异,使不同程度的学生有不同的发展,拓展题关注发展,使不同层次的学生得到不同程度的提高。

  四、总结质疑,自我提高

  让学生交流学习的收获,引导学生梳理所学知识,总结学习方法,并在自评与互评的反思中提高。

  基于教学环节的设计,为了突出重点,为学生掌握知识和记忆打下坚实的基础,板书如下:

  小数的性质

  小数的末尾添上0或者去掉0,小数大小不变。

  以上是我对这一课时的教学设想,在这堂课的设计中,注重引导学生沿着“实例——猜想——验证——总结——应用”的轨迹去探索、去发现,使学生体验探索、发现数学规律的基本策略和方法。我相信学生能在老师的带领下,完成此节课的教学内容,基本达到教学目标。说课完毕,欢迎指正,谢谢!

《小数的性质》教案 篇6

  一、说教材

  1、教学内容:六年制小学数学第八册P100例1、2。

  小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。

  2、教材的重点和难点:

  掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。

  3、教学目标:

  (1)利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。

  (2)让学生进一步体验教学与日常生活的'密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。

  (3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。

  二、说教法

  1、通过直观、图示,让学生充分感知,经过比较归纳,最后概括出小数的性质;从而使学生的思维从形象思维过渡到抽象思维。

  2、采用引探教学法,依据学生认知规律对例题进行加工调整,在探求知识规律处适当给予启发、引导,以调动学生学习的自觉性、积极性,从而达到感知新知,概括新知,应用新知,巩固和深化新知的目的。

  三、说学法

  通过本节教学,要使学生掌握一些基本的学习方法:

  1、学会通过比较、归纳,最后概括出一类事物的本质属性。

  2、引导学生自主探究,培养他们用已有知识解决新问题的能力。

  3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。

  四、说教学程序

  (一)情景导入激趣揭题

  (课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。

  同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)

  这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。

  (二)调整例题探索新知

  1、教学例1

  (1)出示米尺投影图

  (2)引导学生观察米尺图,提问:

  A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(l分米)

  B、0.10O米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少毫米?(10厘米)

  C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)

  结合学生回答,例1图上的标注应改为:

  0.1米是1/10米,就是1分米

  0.10米是10个1/100米,就是10厘米

  0.100米就是10个1/1000米,就是100毫米

  因为1分米=10厘米=100毫米

  所以0.l米=0.10米=0.100米

  这样,学生根据小数的意义,主动从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准)强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。

《小数的性质》教案 篇7

  教学内容:

  四年级下册教材第38、39页的内容及练习十第1、2、3、4题。

  教学目的:

  1. 引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.

  2. 培养学生的动手操作能力以及观察、比较、抽象和归纳概括的能力.

  3. 培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点.

  教学重点:

  让学生理解并掌握小数的性质.

  教学难点:

  能应用小数的性质解决实际问题.

  教学步骤:

  一、创设情境,导入新课。

  创设情境:夏天的`时候同学们都爱吃冷饮,老师了解到校门口左边的商店里一种雪糕标价是2.5元,右边一家则是2.50元,那你们去买的时候会选择哪一家呢?为什么?

  为什么2.5元末尾添个0价钱不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。

  二、出示课题,提出目标。

  1.知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.

  2.培养动手操作能力以及观察、比较、抽象和归纳概括的能力.

  3.培养初步的数学意识和数学思想,感悟到数学知识的内在联系.

  三、自学尝试,探究新知。

  1.出示尝试题

  (1)1、10、100这三个数相等吗?你能想办法使它们相等吗?

  (2)你能把1分米、10厘米、100毫米改用米作单位表示吗?

  (3)改写成用米作单位表示后,实际长度有没有变化?说明什么?

  (4)0.1米= 0.10米=0.100米这个等式从左往右看,小数末尾有什么变化?小数大小有什么变化?从右往左看又怎样呢?你发现了什么规律?

  2.学生自学课本38页后尝试练习并讨论。(5分钟后全班交流)。

  3.根据自学情况引导讲解。

  四、拓展练习, 验证结论。

《小数的性质》教案 篇8

  1、凭借学生的数学现实,帮助学生解决现实数学中的问题。

  小数的基本性质是在学生学习了小数的组成、小数的大小比较、小数与十分之几、百分之几的互化等知识的基础上进行学习的。在学生已有的生活经验中,学生一般都有去商店购物的体验,都了解0.8元与0.80元,1.70=1.7相等。但学生的这种认识相当粗浅,表现在学生不能运用已学的知识去理解为什么0.8=0.80,1.70=1.7。通过本课的教学,要使学生真正理解小数的性质,真正懂得为什么小数的末尾无论添几个0或去几个0,小数的大小不变。本课设计时,并没有采用常用的一步步归纳总结的思路,先归纳小数末尾添一个零,小数的大小不变,再归纳添两个、三个、乃至无数个零的情况。而是一步到位。但在一步到位的时候。舍得化时间,整整用了两大块时间,分别在验证猜测与归纳总结时,让学生充分地发表自己的观点,在生生、师生互动中实现对小数性质的掌握。同时,学生已有的数学现实随着课堂教学的不断深入而呈现不断变化,在这样一个动态过程中,教者通过不断创设一个个新的问题情景,不断激起学生一个个新的认知冲突,使学生原有的数学现实不断地被激活,学生不断地体验着发现、创造。生活中处处有数学、处处有学问油然而生。

  2、学生真正成为规律的探索者、发现者。小数基本性质的归纳,小数基本性质的运用,教师充分地让学生自己去探索、去发现。教师既没有被学生已知0.8=0.80的现象所迷惑;而轻易放过让学生作进一步探究的机会;同时又充分地相信学生、放手让学生去探索、去发现,每一次都是学生自己讨论,自己发现、自己总结、自己归纳,一层一层不断地深入,不断地完善。正如教师所说:虽然字写得稚嫩了些,但毕竟是学生自己的发现。教师敢大胆打破书上的框框,让学生自己写自己的发现、自豪地读自己的发现、自豪地用自己的发现去解决问题,这些无疑都将对学生的终生有用。

  3、不但使学生学到知识,同时使学生学到做学问的方法。

  本课教师在设计时,紧紧围绕这样一条思路:一个规律的得出,先要猜测,在猜测的基础上进行验证,在验证的基础上观察,归纳。规律的得出,不求一下子十分准确,在不断发现中逐步加以完善,逐步加以提升。由于受学生思维的限制,小学里学习的性质、定理一般运用不完全归纳的思想进行推理总结。怎样在性质、定理归纳推理的过程中,正确地运用这种思想,可能比具体的推理过程更有价值,因为这里有做学问的态度、做学问的方法。本课在教学时比较好地把握了这一点,先让学生根据已有的0.8=0.80、1.7=1.70进行大胆的猜测,在猜测后强调猜测的结果是否一定成立,必须用所学的知识加以验证,验证时样本的抽取要尽量随机。在验证的基础上观察,归纳,提升,在归纳过程中允许学生理解层次上的有所差异,在不断发现中逐步完善。

《小数的性质》教案 篇9

  [课程标准要求]

  课标对小数的性质这部分内容指出引导学生通过动手、观察、经历自主发现小数的性质的过程,并总结概括出小数的性质。自主发现是行为动词,动手、观察是行为条件,行为程度是指学生发现小数的性质,并总结概括出小数的性质。

  [学情分析]

  本课学习内容,看似容易,但理解起来有点难度。因此学生将在教师设计的量一量、说一说、比一比、涂一涂等活动中开展学习活动。通过合作交流、观察、总结发现小数的性质,并应用小数的性质化简和改写指定位数的小数。

  [学习目标]

  1、学生以小组合作为单位,通过动手操作、观察、比较、交流、归纳概述出小数的性质。

  2、运用小数的性质能正确地化简、改写小数。

  教学重点理解掌握小数的性质。

  教学难点

  探索发现并概括出小数性质的过程。

  [评价任务]

  通过练习和例3化简例4改写小数检验目标1、2的教学完成情况

  [资源与建议]

  1、教材分析:这部分内容是在学生学习了分数、小数的初步认识的基础上,进一步理解了小数的意义,认识了小数的计数单位,会熟练地读、写小数后教学的,本课的知识点不多,但学生理解起来有点难度,因此教材设计了让学生自主探究的学习内容,教材先通过例1和例2教学小数的性质,即让学生通过比较0.1米、0.10米、0.100米的大小,比较0.3和0.30的大小,引导学生归纳出小数的性质。然后,又安排例3和例4对小数的性质加以应用。运用一正一反两个例题,即一个是去掉小数末尾的“0‘把小数化简,一个是在小数末尾添上”0“把小数改写成指定位数的小数,来使学生学会小数性质的应用。学好这部分内容是为今后学习小数的四则运算打基础的。

  2、教具:课件

  学具:米尺,方格图,殊为顺序表

  授课对象:四四班学生

  授课地点:考务办公室

  3、本课的学习按以下流程进行

  4、本节课的重点是理解小数性质的含义,难点小数性质归纳的过程.突破方法:让学生在大量感性体验的基础上,自己试着归纳总结。

  [学习过程]

  一、创设情境,引导探索

  1、谈话激趣

  昨天因为买冰激淋的事难住了我女儿,大家来帮帮她好吗?同一种冰激凌金阳光超市标价2.5元,家家乐超市标价是2.50元。那家便宜些呢?2.5元是多少钱?2.50元呢?它们什么关系?(相等)(结合学生的回答板书)建议我女儿去那家买?(都行)通过比钱数我们知道了2.5等于2.50请观察这两个小数,2.5是怎样变成了2.50的?(在2.5的末尾添上0)

  3、为什么在2.5元的末尾添个0大小不变呢?究竟可以添几个零呢?是不是什么数末尾添零大小都不变呢?请看老师这里有一个小数0.1我在它的末尾添一个零,它的大小变吗?添两个零呢?(不变)我们想个什么办法验证一下?(加个单位)加个米好吗?

  二、合作探究,探索新知

  (一)学生量出0.1米0.10米0.100米纸条的长度,通过比较发现它们长度相等。

  下面我们以小组为单位来试一试,请看合作要求:

  出示例1比较0.1米0.10米0.100米的大小。

  要求:1、组长分工分别量出0.1米、 0.10米、0.100米纸条的.长度。

  2、把量出的0.1米、 0.10米、0.100米纸条的长度放在一起比一比看你们有什么发现?

  (合作并比较)

  0.1米是多长?(1分米)你是怎么想的?0.10米呢?(10厘米)你是怎么想的?0.100米呢?(100毫米)你是怎么想的?

  汇报交流

  生:我量的是0.1米。0.1米是十分之一米,也就是1分米。我量出1分米长的纸条就是量出了0.1米长的纸条。

  生:我量的是0.10米。0.10米是10个百分之一米,也就是10厘米。我量出10厘米长的纸条就是量出了0.10米长的纸条.

  生:我量的是0.100米。0.100米是100个千分之一米,也就是100毫米。我量出100毫米长的纸条就是量出了0.100米长的纸条

  生:我们发现1分米、10厘米、和100毫米的纸条都一样长。

  师小结(看课件)因为1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。

  同学们我们通过小组合作量0.1米、 0.10米、0.100米的长,得出0.1米=0.10米=0.100米。如果老师再给你一组小数你也能想办法比较它们的大小吗?

  (二)学生通过在正方形纸上涂0.3和0.30比较发现它们大小相等。

  出示例2:比较0.3与0.30的大小

  师:你认为这两个数的大小怎样?(一样)想一下你可以用什么办法来比较这两个数的大小呢?老师给同学们准备了两个大小一样的正方形。请同桌两人合作利用它们试一试

  合作要求;

  1、两人分工分别在同样大小的正方形纸上涂出0.3和0.30。并互相说一说你是怎么想的?

  2、把涂出的0.3和0.30的正方形纸放在一起比一比看你们有什么发现?

  汇报:

  (1)我涂的是0.3,它是把1个正方形平均分成10份,我涂3份,0.3就是3个十分之一.

  (2)我涂的是0.30,它是把1个正方形平均分成100份,我涂30份,0.30就是30个百分之一.也就是3个十分之一.

  (3)我的发现是0.3等于0.30

  师:通过涂小数0.3和0.30涂出的什么相同?什么不同?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变。)从中你发现了什么?(0.3与0.30相等.)

  (三)引导观察,得出小数的性质

  指2.5元=2.50元;0.1米=0.10米=0.100米;0.3=0.30引导学生观察:我们来看这几组等式,从左往右观察2.50元同2.5元相比;0.10米同0.1米相比0.30同0.3相比。小数有什么变化?

  生:我发现小数的最后面加了0。生:小数后面多了一个0(哪儿多个0呢?)那小数大小呢?

  生:没有变化。0.100米同0.1米相比有什么变化?小数的大小呢?

  通过以上观察你发现了什么?也就是板书:小数的末尾依次添上”0“

  学生归纳:在小数的末尾添上”0“,小数的大小不变。

  从右往左观察,2.5元同2.50元相比;0.10米同0.100米相比;0.3同0.30相比;0.1米同0.100米比小数又有什么变化呢?

  生:小数后面依次少了一个0生:小数的末尾,板书:去掉”0“那小数的大小呢?生:没有变化。通过观察你又发现了什么?生:在小数的末尾去掉0,小数的大小不变

  师:综合刚才的观察,你发现了什么?

  师板书:小数的末尾添上0或去掉0,小数的大小不变。这就是小数的性质。

  生齐读一遍.板书课题:小数的性质

  (四)进一步探究,加深感知

  师:无论添0还是去0都是在哪儿添或去才能使小数的大小不变呢?(小数的末尾)在整数的末尾添0去0数的大小变吗?(变)现在你知道为什么在2.5元的末尾添一个0仍然和2.5元相等吗?(2.5是小数)在1的末尾添上0它的大小变不变呢?(变)为什么?(因为1是整数)整数有这个性质吗?(没有)在2.5这个小数5的前面添上0它的大小变吗?(变)为什么?(不是小数的末尾)哪儿才是小数的末尾?

  注意:小数的性质是在”小数“的”末尾“添上0或去掉0,小数的大小不变。你认为小数的性质里哪些词很重要?(末尾)

  齐读一边小数的性质.

  根据小数的性质小数的末尾是可以添上”0“或去掉”0“的,并且小数的大小不变。请同学们来看。

  练习

  不改变数的大小,下面数中的哪些”0“可以去掉,哪些”0“不能去掉?为什么?先来看3.90米,(3.90 500 20.20问为什么?)

  3.90米,0.30元,500米,1.80元

  0.70米,0.04元,600千克,20.20米

  三、联系生活,灵活运用

  1.教师结合板书内容讲解性质的运用。

  同学们像3.90米、0.30元等这些数根据小数的性质去掉它们末尾的0,小数的大小不变。根据小数的性质去掉小数末尾的0也就是把小数进行了化简。你能化简下面小数吗?

  化简下面各小数:

  例3 0.70 105.0900

  小数里的其他零可以去掉吗?(不能)

  一般计算时,遇到小数末尾有0,都要化简。来看下面这些数化简后分别是多少?

  练习

  (2)同学们根据小数的性质去掉小数末尾的0就把小数进行了化简。有时根据需要,我们还要根据小数的性质在小数的末尾添上0;把小数改写成指定位数的小数。

  出示:例4不改变数的大小,把0.2、4.08改写成小数部分是三位的小数,怎样改写?

  把3改写成小数部分是三位的小数,怎样改写?(想一想超市里2元的商品标价时还怎么标:2.00元)

  提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上”0“。能不能在小数中间添零?不能,要使小数的大小不变只能在小数的末尾添”0“

  请把这几个数改写成三位小数。

  练习

  应用小数的性质我们可以化简一个小数还可以对一个小数进行改写。请同桌两人讨论一下应用小数的性质时,要注意什么?

  同桌讨论:应用小数的性质时,要注意什么?(无论添0还是去0都是在小数末尾)

  请看这三个数0.70 4.08 0.310 0.20去掉0,数的大小怎样?4.08去掉0,会怎么样?0.310可以添上0吗?

  四、全课总结

  今天我们学习了什么内容?什么是小数的性质?小数的性质有什么用?应用小数的性质时,要注意什么?2.5的末尾可以添上多少个”0“呢?

  五、看课本

  我们今天学的内容在课本第58、59页,请把课本看一下把该画的内容画下来。

  六、多层练习,巩固深化

  (一)我是小法官(打”√“,错的打”ד)

  1、把0.50 0.0600的小数点后面的”0“去掉,小数的大小不变。

  2、在5.3的末尾添上三个”0“,它的大小不变。

  3、一个数末尾添上”0“或者去掉”0“,大小不变。

  (二)把相等的数连起来。

  2.70 4.400

  31.0100 0.005

  72.060 2.07

  0.0050 31.01

  4.40 72.60

  (三)给下面的物品加上标签(以元作单位,用两位小数表示)。

  水杯3元2角

  铅笔6角

  板书设计:

  小数的性质

  2.5元=2.50元

  1分米=10厘米=100毫米

  0.1米=0.10米=0.100米

  0.3=0.30

  小数的末尾添上”0“或去掉”0“,小数的大小不变。

《小数的性质》教案 篇10

  教学目标:

  1、理解并掌握小数的性质,正确理解“小数末尾”的含义,并会用小数的性质将小数化简和把一个数改为指定小数位数的小数。

  2、在引导学生发现小数性质的过程中,培养学生的观察,概括和语言表达能力。

  3、在数学探究活动中树立学习数学的信心和兴趣。

  教学重点:

  小数的性质。

  教学难点:

  理解小数的性质。

  教具学具准备:

  课件、练习纸。

  教学过程:

  一、创设情境,激发兴趣

  师:同学们,今天我们请位老朋友和大家一起上课,看看他是谁?(出示孙悟空图片)孙悟空的兵器是什么?(金箍棒)我们知道孙悟空的金箍棒,能长能短,变化无穷,下面我们来让它变一变,金箍棒现在长度是1米,我在1的末尾添上1个0,变成10米,我来喊“金箍棒”,你们喊“变”,看它怎么变(动画演示金箍棒1米变成10米);在10的末尾添1个0,变成100米(动画演示金箍棒10米变成100米)。有意思吧!现在把100末尾的两个0去掉,变成1米(动画演示金箍棒100米变成1米);用小数来试一试,输入0.1米,在0.1的末尾添上1个0,变成0.10米(动画演示金箍棒0.1米变成0.10米),啊,怎么没反应。再在0.10的末尾添上2个0,变成0.100米(动画演示金箍棒0.10米变成0.100米),啊,还是没反应,这是怎么回事?谁想说说看。

  生1:法术失灵了。

  生2:0.1,0.10,0.100米这三个长度一样长。

  老师板书:0.1米,0.10米,0.100米

  二、主动探素,体会领悟

  1、初步感知小数的性质。

  师:如果你认为这三个长度相等,用你学过的知识解释一下,它们为什么相等,如果你对这三个长度相等有疑问,就把你想到的东西写下来。

  拿出老师提供的空白练习纸,把你的想法写下来。

  (1)学生动手写下来。

  (2)学生汇报。

  生1:因为0.1米=1/10米=1分米,0.10米=10/100米=10厘米,0.100米=100/1000米=100毫米,而1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。

  生2:因为0.1米里有1个1分米,0.10米里有10个1厘米,0.100米里有100个1毫米,而1个1分米、10个1厘米、100个1毫米相等,所以0.1米=0.10米=0.100米。

  老师适时板书:0.1米=0.10米=0.100米。

  (3)观察0.1=0.10=0.100初步认识小数的性质。

  师:0.1米=0.10米=0.100米,三个数的单位相同,也就是0.1=0.10=0.100(板书),看一看,你发现了什么?和你同桌说一说。

  生1:在小数的后面加上一个0或加上两个0,小数大小是一样。

  生2:在小数的末尾添上0,小数大小不变。

  生3:在小数的末尾去掉0,大小是一样的`。

  2、深化认识小数的性质。

  (1)纯小数中比一比

  师:确实是这样的,是不是其它小数也有这样的特点呢?这样吧,你在心中想一个这样的数,拿出1号练习纸,把你想的小数表示出来,比一比它们是否有这样的特点,当然你也可以用其它的办法比一比。

  练习纸:

  两个大小相等的正方形,一个平均分成10份,另一个平均分成100份。

  三个大小相等的正方体,分别平均分成10份、100份、1000份。

  生动手写小数,涂一涂,比一比,师适时板书。

  (2)混小数中比一比

  师:同学们,你们写的小数是不是也有这样的特点?下面看看大屏幕上的小数是不是有这样的特点?

  出示一组混小数,让学生写小数,比一比。

  师:大屏幕上的涂色部分应该用哪两个小数来表示?

  生:1.2和1.20

  师:它们相等吗?

  生:看涂色部分是一样大的。

  师动态演示两个阴影部分相等。师:你还能举出这样的例子吗?

  生举例:如1.5=1.50,2.6=2.60

  师:还能说吗?(能)这样的数说得完吗?(不能)能说这么多,你能说出这么多这样的小数,说明你发现了某种规律,这样吧,你把你的发现和你的同桌说一说。

  (3)小结小数的性质,揭示课题。

  生1:小数的后面无论添上几个0,它都不变。

  生2:小数的末尾添上0,去掉0,大小都不变。

  根据学生的汇报完善,归纳,总结出小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

  师:这就是我们今天来学习的内容:小数的性质(板书课题)

  3、探究小数性质的内涵

  师:下面请看到大屏幕,

  这是我们熟悉的数位顺序表,如果一个整数,在它的末尾添上0,那它表示的大小就不同了,如5,变成50,同样在整数的末尾去掉0,它表示的大小也不同了,如700;如果是一个小数,在它的末尾添上0,或去掉0,它的大小就不变,如0.3变成0.30,0.300,15.20__变成15.2。(借助数位顺序表,动画演示添0,去0的过程)

  4、教学小数性质的应用

  (1)化简小数

  师:现在脑子里想一个数,想一想,哪些0可以去掉,哪些0不能去掉?

  生汇报,如:109.900中末尾的2个0可以去掉。

  师:通过刚才的学习,我们可以把小数末尾的0去掉使小数更简洁,这个过程我们称为把小数化简(板书:化简),

  出示例3,化简小数:0.70 105.0900

  生独立完成,汇报,师讲评。

  0.70=0.7 105.0900=105.09

  (2)改写小数

  师:根据小数的性质我们可以去掉小数末尾“0”,也可以在小数末尾添上“0”,有时我们需要把一个数改写成指定小数位数的小数。(板书:改写)

  出示教学例4,不改变数的大小,把下面各数写成三位小数。

  0.2 4.08 3

  三、应用新知、解决问题。

  1、做一做

  (1)化简下面各数。

  0.40 1.850 2.900 0.080 12.000

  (2)不改变数的大小,把下面各数写成三位小数。

  0.9 30.04 5.4 8.18 14

  2、辨一辨:

  因为0.2=0.20,所以0.2和0.20没有区别。

  3、填一填

  把0.9改写成计数单位是千分之一的数是( ),把800个0.001化简是( )。

  四、总结交流

  通过本节课的学习,你有什么收获?

  板书设计:

  小数的性质

  小数的末尾添上“0”或去掉“0”,小数的大小不变。

  1分米10厘米100毫米

  0.1米=0.10米=0.100米

  0.1=0.10=0.100

  0.3=0.30

  1.2=1.20

《小数的性质》教案 篇11

  教学目标:

  1.在现实情境中通过观察、猜想、验证、比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质解决实际问题。

  2.经历从现象中发现问题、提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。

  3.在经历变与不变的过程中挖掘数学内涵,感悟数学思想,发展学生的数学思维。

  教学重点:

  理解小数的性质,并能应用性质解决实际问题。

  教学难点:

  感悟小数性质中不变与变化的数学辩证思想,发展学生思维。

  教学流程:

  一、情景导入。

  创设数学王国中数字“0”去做客的情景,发现数字“0”引起整数的变化。

  二、自主探究。

  1.以数字“0”前往小数家中做客的情景,引出问题:0.4是不是等于0.40.

  2.在独立验证的基础上,小组讨论交流,为什么0.4=0.40?

  3.借助:0.4=0.40=0.400,引导学生逐步概括出小数的性质。

  4.深入研究小数的性质:

  (1)从小数末尾添上“0”的情况去推断与思考去掉“0”的情况。

  (2)在小数的末尾添上“0”或去掉“0”,小数的大小不变,但是小数的哪些方面发生了变化?让学生先讨论,在交流举例。

  (3)质疑:为什么在整数的末尾每添上一个“0”,整数就要扩大10倍,而在小数的末尾添上若干个“0”,小数的大小不变?

  5.添上两笔,让4.40、400三个数相等。

  6.探讨:从0.4到0.04,小数的大小有没有发生变化?从而让学生更深刻的'理解“小数的末尾”这一关键词眼。

  三、练习应用。

  1.出示超市里某些食品的价格表,上面哪些小数里的“0”可以去掉?为什么?

  总结:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

  质疑:为什么有些小数能化简,但是价格表中仍然写成两位小数?

  2.把下面物品的价格写成用“元”作单位的两位小数。

  总结:利用小数的性质,可以把小数或者整数改写成指定位数的小数。

  3.初步感知小数改写的作用。

  四、课堂总结。

  通过这节课的学习,你有了哪些新的收获?

《小数的性质》教案 篇12

  一、教材

  1.教学内容:五年制小学数学第七册第三单元小数的意义和性质第三课时:“小数的性质”(课本第64-6 5页,例1—例4)包括:(1)小数的性质;(2)小数性质的应用(六年制第八册第四单元)。

  2.教材所处地位:本节是系统学习小数的开始,为后面学习小数四则计算做了必要的准备,起铺垫作用。

  3.教材的重点和难点:对小数的性质这一概念的理解是本节的难点,小数性质的应用是本节的重点。

  4.教学目标:(1)识记理解小数的性质;(2)根据需要把小数化简或是把整数改写成指定数位的小数。

  二、教法

  1.通过直观、推理让学生充分感知,然后经过比较归纳,最后概括小数的性质,从而使学生从形象思维逐 步过渡到抽象思维,进而达到感知新知、概括新知、应用新知、巩固和深化新知的目的。

  2.采用快乐教学法,激发学生的学习兴趣,鼓励学生积极发言和敢于质疑,引导学生自己动脑、动手、动 口、动眼以及采用对口令抢答等多种形式的巩固练习,使学生变苦学为乐学,把数学课上得有趣、有益、有效 。

  三、学法

  通过本节教学使学生学会运用直观的教学手段理解掌握新知识,学会有顺序地观察问题、对比分析问题、 概括知识及联想的方法。

  四、教学程序

  (一)谈话法导入新课

  在商店里,经常把商品的标价写成这样的小数:手套每双2.50元,毛巾每条3.00元。这里的2.50元、3.00 元分别是多少钱?(2.50元是2元5角,3.00元是3元)为什么能这样写呢?这是小数的一个重要性质,是我们今天要学习的内容,并板书“小数的性质”。

  (二)讲授新课

  1.研究小数的性质

  (1)出示例1,比较0.1米,0.10米和0.100米的大小。

  首先让学生拿出事先准备好的米尺(10厘米以上),在米尺上找出1分米、10厘米、100毫米是同一点,说 明:1分米=10厘米=100毫米(板书)。

  请同学们看米尺想,1分米是1/10米,可写成怎样的小数?(0.1米);10厘米是10个1/100米,可写成怎样 的小数?(0.10米),100毫米是100个1/1000米可写成怎样的小数?(0.100米)

  板书:因为1分米=10厘米=100毫米

  所以0.1米=0.10米=0.100米

  在这里应用直观演示法,变抽象为具体。然后板书准备比较,观察上下两个等式,说明0.1、0.10、0.100 相等,再添上“因为”、“所以”、“=”。

  A.从左往右看,是什么情况?(小数的末尾添上"0",小数大小不变)

  B.从右往左看是什么情况?(小数的末尾去掉"0",小数大小不变)

  C.由此,你发现了什么规律?(小数的末尾添上"0"或去掉"0",小数的大小不变)

  在这里应用了比较法,便于发现规律,揭示规律,总结性质。

  (2)为了进一步证明小数性质的可靠性出示例2:比较0.30和0.3的大小。(图略)

  教师指导学生自学例2。

  教师指示,学生思考:

  ①左图是把一个正方形平均分成几份?(100份)阴影部分占几分之几?(30/100)用小数怎样表示?(0.30 )

  ②右图是把一个正方形平均分成几份?(10份)阴影部分占几分之几?(3/10)用小数怎样表示?(0.3)

  ③引导学生小结从图上可以看出:0.30是30个1/100,也是3个1/10。0.3是3个1/10。所以得出:0.30=0.3 。

  ④由此,你发现了什么规律?

  师生共同小结、板书如下:

  例2:0.30=0.3

  小数的末尾添上"0"或者去掉"0",小数的大小不变,这叫做小数的性质。

  为了帮助学生对小数性质的理解,教师强调指出:为什么在小数的末尾添"0"或去"0",小数的大小就不变 呢?(因为这样做,其余的数所在数位不变,所以小数的大小也就不变。举例说明)小数中间的零能不能去掉?能不能在小数中间添零?(都不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。举例 说明)整数是否具有这个性质?(没有,理由同上第二点)

  2.小数性质的应用

  教师谈话:根据这个性质,遇到小数末尾有"0"的时候,一般地可以去掉末尾的"0",把小数化简。

  (1)化简小数

  出示例3:把0.70和105.0900化简。

  提问:这样做的根据是什么?(把小数末尾的"0"去掉,小数的大小不变)弄清题意后,学生回答,教师板 书:0.70=0.7;105.0900=105.09。通过这组练习巩固新知,为以后小数作结果要化简作准备。

  口答:课本“做一做”第1题。

  (2)把整数或小数改写成指定数位的小数

  教师谈话:有时根据需要,可以在小数的末尾添上"0";还可以在整数的个位右下角点上小数点,再添上" 0",把整数写成小数的形式。

  如:2.5元=2.50元 3元=3.00元

  出示例4:不改变小数的大小,把0.2、4.08、3改写成小数部分是三位的小数。

  小组讨论后,2人板演,其余学生齐练,订正,表扬。

  0.2=0.200 4.08=4.080 3=3.00

  练习:口答课本第65页的“做一做”第2题。

  讨论小结:改写小数时一定要注意下面三点:

  A.不改变原数的大小;

  B.只能在小数的末尾添上"0";

  C.把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添"0"。(想一想为什么)

  3.学生仔细阅读课本第64页的例1、例2,记住并理解小数的性质;阅读课本第65页例3、例4掌握小数性质的应用。

  五、巩固练习

  1.练习十三第1题:下面的数,哪些"0"可以去掉,哪些"0"不能去掉?指名同桌对口令,其余学生当小评委。

  第2题:把相等的数用线连起来,先在书上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。

  第3题:下面的数如果末尾添"0"哪些数的大小不变,哪些数的大小变化?小组讨论,提问订正,找规律(小数的末尾添"0"大小不变,整数的末尾添"0"大小变了)。

  第4题:化简下面小数,采取抢答来完成。

  第5题:先填书上再口答订正。

  2.练习十三第6题:用元作单位,把下面的钱数改写成小数部分是两位的小数。2人板演,其余学生齐练, 评价鼓励。

  附板书设计:

  小数的性质

  例1:比较0.1米、0.10米和0.100米的大小。

  因为1分米=10厘米=100毫米

  所以0.1米=0.10米=0.100米

  0.1=0.10=0.100

  ──────→

  ←──────

  例2:0.30=0.3

  小数的末尾添上"0"或者去掉"0",小数的大小不变。这叫做小数的性质。

《小数的性质》教案 篇13

  【重点难点】

  重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点 、数大小变化的规律。

  难点:用“四舍五入”法按要求求出小数近似数。

  【教学过程】

  一、揭示课题

  这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。

  二、复习小数的意义

  1、做期末复习第8题(1)、(2)、(3)。

  (1)学生在书上填写,集体订正。说一说0.5、0.023的意义。

  (2)说一说小数的意义是什么?

  问:一位小数、两位小数、三位小数……各表示几分之几的数?

  2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?

  (2)填空。

  0.1里面有( )个0.01。 10个0.001是( )。

  10个0.1是( )。 0.1里有( )个0.01。

  三、复习小数的性质和小数的大小比较

  1、练习。

  (1)把下面小数化简。

  4.700 16.0100 8.7100 14.00

  (2)不改变数的大小,把下面的数写成两位小数。

  4.2 13.121

  ①学生做,指名板演,集体订正。

  ②问:做题时是根据什么来做的?什么是小数的性质?

  2、做期末复习第9题,第1竖行两题。

  (1)学生在书上做,指名板演,集体订正。

  (2)让学生说一说怎样比较两个小数的大小。

  3、做期末复习第10题。

  (1)先把这些数排列起来,找出最大、最小数,并和其他数一起,写好序号。

  0.1 0.012 0.102 0.12 0.021

  (2)按要求从小到大排列。

  四、复习小数点位置移动引起小数大小变化的规律

  1、做期末复习第8题(4)、(5)。

  (1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?

  问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?

  (2)学生练习,指名回答。

  2、练习。

  (1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。

  (2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。

  五、复习求小数的近似数和整数的改写

  1、把下面小数精确到百分位。

  0.834 2.786 3.895

  (1)学生做,指名板演。

  (2)让学生说一说怎样求一个小数的近似数。

  2、(1)把下面各数改写成“万”作单位的数。

  (2)把下面各数改写成“亿”作单位的数。

  460000000

  学生在练习本上做,指名板演,说一说怎样把一个较大数改写

  成“万”或“亿”作单位的数。

  3、把下面各数改写成“万”作单位的数,并保留一位小数。

  (1)学生在练习本上做,指名板演。

  (2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?

  4、做期末复习第9题剩下的两题。

  (1)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。

  (2)学生练习,集体订正。

  (3)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以

  了。

  5、做期末复习第11题。

  学生在书上做,并说明理由。

  六、全课总结

  这节课复习了什么内容?

  怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?

  【作业设计】

  1、0.45表示( )。

  2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。

  3、把改写成“万”作单位的数是( )万,保留一位小数是( )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。

  4、在○里填、或“=”。

  16.36○16.63 0.36万○3600

  0.97○1.01 0.23亿○2100万

  5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?

  10000千克稻谷可出大米多少千克?

《小数的性质》教案 篇14

  本节课的教学,是要学生理解和掌握“小数的性质”。在本节课教学过程中,我力争做到“学生会的不教,学生能探讨的不引,学生能发现的不导”。让学生在学习中学会学习,学生能根据教师的引导,积极主动地学习知识,真正还课堂于学生。基本实现了本节课的教学目标。

  在教学时,我没有直接使用课本中的例题,而是运用《西游记》故事引出数学问题:0.1米、0.10米、0.100米相等,为什么?然后让学生根据前面学习过的小数意义的知识独立思考,然后小组合作交流探索出其中的道理。由于学生在汇报时说的都非常明白,所以我认为老师没必要再去做重复的工作,所以就只做了相应板书。为了让学生把小数的性质用文字概括出来,我引导学生从左到右观察三个小数的变化,概括出小数末尾添上0小数大小不变规律,接着再从右向左观察,概括出小数性质的后半部分:小数末尾去掉0小数大小不变,老师并做相应板书。

  为了让学生能把自己根据出来的规律记住,我让学生读一遍,然后不看黑板试着说一遍,加强孩子的记忆。为了让他们更好的理解小数的性质,我又设计了一个问题:你觉得小数的这条性质中哪个词最关键?为什么?通过这个问题,学生能更好的理解小数末尾的含义,为一会学习例2小数的应用打下了基础。同时我又让学生根据小数的性质举一个例子,目的也是让学生彻底理解小数性质的含义。我在小数性质的含义理解上费了很多时间,学生理解的比较透彻,在例2与例3的教学中,我用课件出示习题,只让学生做以简单解释“化简”的含义,便让学生独立解答,从解答过程来看学生学的效果非常好。

  课后巩固练习和拓展练习是我精心设计的,从简到难巩固知识,发展学生思维。尤其是最后一道题“只动两笔,在5、50、500之间添上等于号”有个同学经认真思考后是这样做的:在5的后面添一个0,在500后面去掉一个0,这是我课前没有想到的,但我觉得学生这样做也符合题目要求,也是经过了一番动脑,所以表扬了这位同学,这是考查老师课堂随机应变能力,我自认为处理的还算可以。

  总体上说,本堂课教学思路比较清晰,但在教学过程中,我的语言还欠精练,课堂上也问了一些无效的数学问题,比如:“你学会了吗?你学的快乐吗?”等等,有些语言还是过于罗嗦,在以后的教学中在这方面要努力改正,争取在备课时把自己的语言组织精练,让每一句话都有用,让每一个字都最精彩。

《小数的性质》教案 篇15

  教材分析:

  人教版四年级下册“小数的意义和性质”这一单元共有“五个板块”的内容:小数的意义和读写法、小数的性质和大小比较、小数点移动引起小数大小的变化、小数与单位换算和小数的近似数,其中小数的意义的理解是本单元的关键。这一单元涉及到的内容比较多,而且知识点比较散,所以这一单元的复习有一定的难度。

  学情分析:

  根据学生平时的作业情况,笔者出了相应的前测卷,了解了学生对本单元知识的掌握情况。通过前测分析,发现:本单元知识学生的错误主要集中在小数的意义、小数的近似数和小数与单位换算这三块内容,其中学生对小数的意义的理解和掌握很不乐观,情况如下:

  图1第一幅图的错误率居然达到了25、53%,第二幅图的错误率是36、17%,图2的错误率也是25、53%。图1第一幅图和图2的错误率是我没有预想到的,测试前我以为这样的基本的题、常见的题,学生的掌握情况会比较好,但是前测的结果让我吃了一惊。图1第一幅图错误的学生大部分填了1、4,第二幅图大部分填了0、3。细细分析图1这么高的错误率,我们会发现:学生只是关注到了涂色部分的份数而没有关注到分成的总份数,实质上学生对小数的意义没有真正地理解。至于图2,我发现学生说不出1到2这一大段表示多少,也就是说学生对这样的题学生没有真正地理解后去做,有些无从下手。

  教学目标:

  1、通过对本单元知识系统地整理和复习,让学生进一步理解和掌握本单元知识,沟通小数和分数、小数和整数之间的联系,形成新的认知结构。

  2、通过介绍0.3、分析错例、猜数等方式,让学生感受复习与整理的方法,提高学生的学习能力。

  3、在学习中,让每一位学生享受到表达的乐趣和成功的喜悦,让学生产生学习数学的信心。

  教学重点:通过整理和练习,巩固本单元知识。

  教学难点:通过整理和练习,对知识的进一步领悟。

  教学预设:

  一、梳理知识

  1、回顾知识。

  (1)揭题:同学们,今天这节课我们一起对小数的意义和性质这一单元进行整理和复习。(出示课题:小数的意义和性质整理和复习)

  (2)引导回顾:回忆一下,这一单元我们学了哪些知识?

  根据生说师相机板贴知识点。

  2、整理知识。

  (1)提出问题:那现在我写一个小数(板书:0.3),你能用学过的知识来介绍它吗?

  (2)明确要求:在你的介绍中不出现这个数,但让别人一听就明白你在介绍它。(出示课件)

  (3)回答一生,理解要求

  评价:这样的介绍符合要求吗?

  (4)知识归类:他用到了这儿的什么知识?

  3、独立思考

  (5)思考:他是从意义的角度来介绍的,那还有不一样的介绍吗?

  (6)记录:看来已经有很多同学想到了,别急,把你想到的记录在学习单第1题的框里。

  学生记录。

  师巡视并引导:想到一种的再想想还有没有不同的介绍方法,比一比谁想到的方法最多。

  (7)汇报,根据生说师相机板书内容。

  预设:

  ①意义:3个0.1;画图;十分位上是3,个位是0等。

  ②大小比较:比0.2大比0.4小的一位小数。

  ③小数点的移动规律:如3的小数点左移一位是几。

  ④近似数:如0.29保留一位小数。

  ⑤单位换算:如300千克等于几吨。

  (8)总结:一个0.3大家居然想到了这么多,这是我们全班同学的智慧,把掌声送给自己。

  【设计意图:通过“介绍0.3”,让学生自主地对本单元知识进行梳理。这样的学习任务,对学生来说是具有挑战性的,可以很好地激发学生的学习主动性;这样的学习任务,可以在较短的时间内完成教学目标,提高教学效率。在“思考介绍方法”和“汇报介绍方法”的过程中,让每一位学生都享受到表达的乐趣和成功的喜悦,感受到“如果你有一种思想,我有一种思想,彼此交换,我们每个人就有了两种思想,甚至多于两种思想”。】

  二、查漏补缺

  1、过渡:刚才我们用一个0、3对这单元的知识进行了梳理,这节课除了梳理,我们还需要查漏补缺,我对你们的作业和练习情况进行了整理。猜一猜,我们班哪块知识错误最多?(出示课件)

  2、根据生说,课件相机出示相应内容并分析。

  预设:

  (1)小数与单位换算。

  ①出示错例。

  ②说妙招:的确,这块内容错误比较多。那做这类题目谁有妙招?

  学生总结方法,师板书。

  ③做一做:那让我们用这个妙招一起来做一做这几题。在学习单第2题的框里写一写过程。

  ④汇报,师相机书写过程。

  (2)小数的近似数。

  ①出示错例。

  ②分析错误:这题错误稍微有点多,主要有两种错误,(出示错例)你能帮忙分析一下错误原因吗?

  生分析原因。

  ③引导总结:对于做这样的题你有什么要提醒大家的?

  (3)小数的性质与大小比较。

  ①课件:恭喜你们,你们做得很棒!

  ②沟通联系:同学们做得这么棒,这个问题肯定难不倒大家,那小数的大小比较跟整数的大小比较有什么相同的地方?

  ③同桌交流:想好的跟同桌说一说。

  ④汇报。

  (4)小数点的移动规律。

  ①课件:恭喜你们,你们做得很棒!

  ②沟通联系:小数点的移动规律其实我们早就用到过了,一起来看。

  出示题,做题,问:仔细观察,你有什么发现?

  (5)小数的意义和读写法。

  ①课件出示:找0、4题

  ②学生判断:图2、

  ③激疑:图1为什么不可以?(0.04)图3呢?(0.8)

  ④总结:都涂了4格,为什么表示的小数却不一样?

  图1得出4/100,图2得出4/10,图3:通过再分得到了8/10,所以这个4格其实表示的是0.8。所以我们不仅要看涂的份数,还要看分的总份数。

  ⑤沟通联系:那问题又来了,出示问题:小数和分数有着怎样的联系?

  ⑥做错题:相信现在大家不会犯这样的错误了吧!这题应该是(1.04)这题呢?总份数不是10份的要先平均分成10份,是0.6。

  【设计意图:这个环节根据学生错误情况,让学生对本单元易混淆和出错的知识进行有针对性的练习,查漏补缺。在练习过程中,让学生说出自己解题的思考过程,总结解题的方法,分析错误的原因,有助于加深学生对本单元知识的理解和掌握,提升思维能力;让学生沟通小数与整数、小数与分数之间的联系,有助于学生从整体上理解和掌握知识之间的内在联系,促进学生认知结构的优化。而且本环节让学生自主选择研究内容,可以很好地激发学生学习的积极性。】

  三、巩固提升

  1、猜数。

  (1)大家学得这么棒,奖励大家玩一个猜数的游戏,(出示课件:猜猜我心中想着几)它就装在这个信封里。

  (2)第一猜:给大家第一条信息:它在1与2之间(课件出示直线),会是几呢?

  生猜。

  师:有多少种可能?(无数种)

  (3)第二猜:那再给你第二条信息:它保留一位小数约是1、7,可能是几?

  生猜,师相机板书。

  师:那这个数最小是几?

  最大是几?(1、74,1、749……)(师板书)

  师:这些数都有可能吗?为什么?(只要看百分位,跟后面的数没关系。)

  师:那找得到这个最大的数吗?(找不到)

  师:那有多少种可能?(无数种)

  (4)第三猜:那再给你一个信息:它是一个两位小数。

  生猜,师判断:大了,小了。

  (5)揭晓答案:1.66

  2、找位置。

  (1)那你能在这条线上找到1、66的位置吗?

  (2)那要准确地找到它,谁有好方法?

  3、说关系。

  (1)出示1、0、1、0、01。

  (2)问:1、0、1、0、01之间有着怎样的关系?

  【设计意图:通过“猜数”和“找位置”等活动,激发学生的参与热情,对本单元知识进行综合练习,加深学生对小数的意义的理解和掌握,提升对小数的近似数、小数的大小比较等的认识,直观地理解1、0、1、0、01之间的关系,提升学生的思维能力。在“猜数”活动过程中,让学生初步感知到近似数的取值范围;在“找位置”活动过程中,培养学生的数感,感知“找小数位置”的步骤:先确定这个小数在哪两个相邻的整数之间,再确定它在哪两个相邻的一位小数之间……感知“找小数位置”的方法:可以从左往右,也可以从右往左等。】

  四、课堂小结

  这节课我们是怎么复习的?对你以后的学习有什么启示?

  【设计意图:通过小结,让学生回顾这节课复习与整理的方法,提升学生的学习能力。】

  小数的意义和性质整理和复习

  小数的意义和性质整理和复习

  意义和读写

  意义和读写

  板书(部分):

  性质和大小比较

  性质和大小比较

  小数点的移动规律

  小数点的移动规律

  单位换算

  单位换算

  近似数

  近似数

  教学反思

  这一单元涉及到的内容比较多,且知识点比较散,对于这一单元的复习,怎样对知识进行梳理?怎样可以做到高效?怎样能让学生形成新的认知?通过对这一节课的研究,感悟到上好复习课,可以从以下3个方面去展开。

  1、制定任务,高效梳理。

  学习任务好比承载教学内容的“舟”,复习课学习任务的选择要符合知识内在的逻辑,又要构建整体的学习框架。“介绍0.3”这一任务无疑是一具有挑战性的任务,学生需唤醒所有有用的知识,这充分地调动了学生的学习积极性和主动性。这个“0.3”,承载了本单元涉及的五块内容,学生通过“介绍0.3”,一个单元的知识点以各种方式表达了出来,高效地完成了本单元的知识梳理。

  2、基于学情,有效复习。

  复习的功能之一是查漏补缺,也就是说,要针对学生学习困难和错误进行复习。这一单元知识多又散,一节课中不可能做到面面俱到,通过前测,了解了学生的学情。

  小数的读写、性质与大小比较、小数点移动引起小数的大小比较,这些内容学生基本上没有问题,所以这节课中对这些内容的处理相对比较简单,如大小比较知识只是让学生沟通了小数大小比较与整数大小比较的联系;小数点的移动规律也只是让学生沟通了跟以前知识之间的联系。

  本节课的重点放在小数的意义、小数与单位换算、小数的近似数等内容上。如“找0.4”题,通过让学生思考“为什么都涂了4格,表示的小数却不一样”,通过比较、分析、总结,让学生感悟到“不仅要看涂的份数,还要看平均分成的总份数,平均分成10份、100份、1000份……的才能直接写成小数”,从而进一步理解了小数的意义以及小数与分数的联系。又如“单位换算”这块内容错误比较多,所以让学生经历了“说妙招——用妙招——说思路”这样一个过程,帮助学生掌握这块内容。

  这样针对学生错误的复习过程,极大地节省了时间,提高了课堂效率,并有效地对本单元内容进行了复习。

  3、精选练习,合理拓展。

  复习课除了查漏补缺,还要使学生进一步地熟练技能、拓展思维,本节课的练习设计关注恰当的拓展性。如:有关“小数与近似数”的题学生常碰到如“一个两位小数保留一位小数约是3.5,这个小数最大是,最小是”这样的题,所以学生以为“近似数是3.5的数只有两位小数这几个数”。针对这样的情况,教学中,通过让学生猜“近似数是1.7的数”,通过找符合要求的最小数和最大数,让学生从这种固定思维中走了出来,感悟到“近似数是1.7”的数有无数个,并初步感知近似数的取值范围。又如:找1.66的位置,学生经历了“说大概的位置——找确切位置”的过程,并在找确切位置的过程中,让学生用“顺着”和“倒着”等不同的方法来找,从而拓展了学生的思维。