首页数学教案小学六年级数学教案反比例教案(通用8篇)

反比例教案(通用8篇)


反比例教案(通用8篇)

反比例教案 篇1

  教学内容:

  义务教育课程标准实验教科书青岛版小学数学十二册第三单元信息窗三。

  教材简析:

  该信息窗呈现了啤酒生产车间的一角,以表格的形式介绍了每天生产啤酒的吨数与需要生产的天数情况。引导学生发现对应数据变化规律,引入对成反比例的量和反比例关系的学习。这部分的教学难点是理解反比例的意义,掌握两种相关联的量变化规律。教师要充分重视知识之间的联系,教学中应充分利用生活中的情境,鼓励学生自己观察、思考、比较、交流,鼓励学生用自己的语言阐述观点。

  教学目标:

  1.使学生理解反比例的意义,掌握成反比例的变化规律,并能初步运用。

  2.通过创设情境,让学生体会、合作、探究形成良好的思维习惯和应用所学知识解决实际问题的方法。

  3.通过学习活动,培养积极的学习态度,树立学好数学的信心。

  教学过程:

  第1课时

  一、创设情境、激趣导入:

  谈话:同学们,前几节课我们参观了啤酒的生产情况,并学习了两个量之间可以成正比例的关系,今天我们继续在啤酒厂参观,看看今天我们能学到哪些新知识?

  [设计意图] 以参观啤酒厂为主线,通过复习正比例的知识来引入新知的学习。然后引导学生看数学信息,提出问题。

  二、自主探究、获取新知:

  1、仔细观察记录表,收集题中的数学信息,提出问题

  谈话:观察情境图,你获得了哪些信息?你能提出什么数学问题?

  (1)“啤酒厂一共要生产多少吨啤酒?”

  (2)“每天的生产吨数与需要生产的天数这两种量有什么关系呢?”

  教师根据学生的提问,有选择的进行板书,如:每天的生产吨数与需要生产的天数这两种量有什么关系呢?(学生提出的其他合理问题先放进问题口袋,下节课再解决)

  下面我们先来解决“每天的生产吨数与需要生产的天数这两种量有什么关系”。课件出示红点例题。

  [设计意图]通过发现对应数据的变化规律,引入对成反比例的量和反比例关系的探索。

  让学生观察记录表,分析表中的两个量:分别是每天生产的吨数和需要生产的天数;需要生产的天数随着每天生产的吨数的变化而变化,每天生产的吨数越多,需要的天数就越少,每天生产的吨数越少,需要的天数就越多。

  引导学生思考:每天生产的吨数在变化,需要生产的天数也随着变化,在这个过程中,哪个量没有发生变化?

  学生观察表格中的数据并进行计算:

  100×60=6000(吨)

  200×30=6000(吨)

  300×20=6000(吨)

  ……

  学生通过计算发现:每天生产的吨数和需要生产的天数的积是一定的。

  师:你能不能用式子来表示出它们的关系?

  学生讨论交流。

  归纳出:每天生产的吨数×需要生产的天数=总吨数(一定)。(板书)

  总结:像这样,每天生产的吨数变化,需要生产的天数也随着变化,总吨数不变,也就是每天生产的吨数与需要生产的天数乘积一定。我们就说,每天生产的吨数和需要生产的天数是成反比例的量,它们的关系叫做反比例关系。

  2、补充练习:

  分的杯数与每杯啤酒量如下表:

  分的杯数/杯

  1

  2

  3

  4

  5

  每杯啤酒量 /ml

  600

  300

  200

  150

  120

  问:分的杯数与每杯的啤酒量成反比例吗?为什么?

  在日常生活中,还有哪两种量是成反比例关系的?你能用数据说明一下吗?

  学生交流回答。

  [设计意图]通过补充练习,帮助学生进一步巩固两种量成反比例的关系。

  3.自主练习第1题

  学生先算出每组对应数据的乘积,找到哪一种量是不变的,再结合反比例的意义进行判断:因为每页的字数×页数=总字数(一定),所以每页的字数和页数成反比例。

  三、巩固练习

  1、判断两种量是否成反比例。说说你的理由?

  (1)煤的总量一定,每天的烧煤量和烧的天数。

  (2)李叔叔从家到工厂,骑车的速度和所需要的时间。

  (3)玉华做12道练习题,做完的题与没做的题。

  (4)长方形面积一定,它的长和宽。

  2、自主练习的第6题

  根据图中信息回答并完成:

  (1)说一说:用水量与水费成什么比例?为什么?

  (2)在图中表示出用水量和水费相对应的关系。

  (3)估计一下:用水95吨,水费是多少元?

  [设计意图]通过多种形式的练习,加强了学生对用数据说明成反比例的量和反比例关系的学习。使不同层次的学生从中体会到成功的快乐。

  四、课堂小结:

  这节课我们研究了什么问题?你有什么收获?

  (引导学生进行总结,能用自己的话说出学习主要内容。)

  教学反思

  本节课首先通过复习,巩固了正比例的意义。通过旧知识引出新知识“反比例的意义”,过渡自然,知识做到了连贯性。然后启发学生主动、自觉地去观察、分析、概括、发现规律。通过知识的对比,加强了知识的内在联系,并通过区别不同的概念,巩固了知识。学生的全面参与,有效地培养了总结、区别、沟通的能力。再加以练习的及时,使学生加深概念的理解。

  第2课时 

  一、导入:

  同学们,通过上节课的学习,我们已经学会了两个成反比例的量和它们的关系,今天我们一起来回顾复习一下成正比例的量和成反比例的量。

  二、练习:

  1、 判断

  (1)一个因数不变,积与另一个因数成正比例。( )

  (2)长方形的长一定,宽和面积成正比例。( )

  (3)大米的总量一定,吃掉的和剩下的成反比例。(  )

  (4)圆的半径和周长成正比例。( )

  (5)分数的分子一定,分数值和分母成反比例。( )

  (6)铺地面积一定,方砖的边长和所需块数成反比例。( )

  (7)铺地面积一定,方砖面积和所需块数成反比例。( )

  (8)除数一定,被除数和商成正比例。( )

  2、选择

  (1)把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.( )

  a.成正比例          b.成反比例        c.不成比例

  (2)和一定,加数和另一个加数.( )

  a.成正比例          b.成反比例        c.不成比例

  (3)在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是( ),成反比例关系是( ).

  a.汽车每次运货吨数一定,运货次数和运货总吨数.         

  b.汽车运货次数一定,每次运货的吨数和运货总吨数.

  c.汽车运货总吨数一定,每次运货的吨数和运货的次数.

  3、判断题:自主练习第3题

  学生判断各题中的两个量是不是成反比例。并说说理由。

  重点引导学生运用反比例的意义进行判断。

  4、印刷厂用6000张纸装订练习本。

  每本的页数

  20

  30

  50

  60

  150

  装订的本数

  300

  (1)先填写上表。

  (2)思考每本的页数与装订的本数有什么关系?

  6、自主练习第2题

  这是一道用抽象形式巩固反比例意义的题目。学生先思考,根据x和y成反比例,确定x和y的乘积一定,再根据第一组数据找到x和y的乘积,然后利用这个乘积和每组中的已知数据,求出另一数据。

  三、你知道吗?(47页相关知识)

  介绍反比例图像,学生了解反比例关系也能用图像表示。由于理解难度较大,只作了解,不做学习要求。

  教学反思:

  本节课课堂练习。课上要重视学生掌握的情况,正确判断的同时,还要说理清楚。学生对一些不是很熟悉的关系如:车轮的直径一定,所行使的路程和车轮的转数成何比例?出粉率一定,面粉重量和小麦的总重量成何比例?判断时会较为困难,说理也不是很清楚。所以教师在补充这些练习时,应该有前瞻性,引导学生对以前所学的知识进行相关的复习,然后再进行相关形式的练习,我想对学生的后继学习必然有所帮助。

反比例教案 篇2

  教学内容:P53~54、第4~13题,思考题,正、反比例应用题的练习。

  教学目的:进一步掌握正、反比例的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断,分析和推理等思维能力。

  教学过程:

  一、基本训练

  P53第4题,口答并说明理由

  二、基本题练习

  1、做练习十第5题

  2提问:按过去的算术解法,第(1)题要先求什么数量?第(2)题呢?

  用比例的知识怎样解答呢,请大家自己做一做。

  评讲:说一说是怎样想的?

  (板书:速度×时间=路程(一定)=反比例=正比例

  提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?

  3、练习:(略)

  三、综合练习

  3、练习十第11题

  启发学生用几种方法解答

  4、做练习十第13题

  (1)提问:这是一道什么应用题?可以怎样列式解答?

  (2)把树苗总数看做单位“1”,成活棵数是94%,你还能用比例知识解答吗?

  四、讲解思考题

  引导:增加铅以后,铅与锡的比是5:3,有怎样的关系式?

  五、课堂:

  通过本课的练习,你进一步明确了哪些内容?

  六、作业:

  第8、9、10题

  七、课后作业:

  第6、7、12题

反比例教案 篇3

  【授课内容】

  《反比例》

  【教材理解】

  《反比例的意义》是新课标人教版小学数学六年级下册第47-48页的内容。本节课的内容是在教学了成正比例的量的基础上进行教学的,是前面“比例”知识的深化,是后面学习“用它解决一些简单正、反比例的实际问题”的基础,它起着承前启后的作用,是小学阶段比例初步知识教学中的一项重要内容。为此,教学时先引导学生回忆已学过的数量关系,通过举例、交流,知识迁移,体会生活中存在着大量的反比例的关系,在此基础上探求新知,最后深化新知。

  【设计理念】

  在教学过程的设计上,首先通过对正比例的复习,直接导入新课教学,揭示课题“反比例”,例题学习,引导学生观察表中的三种量中的变化规律,通过学生讨论交流、自主探究,在教师的引导概括出反比例的意义,然后进一步抽象概括反比例关系式:xy=k(一定),接着运用反比例的知识,判断两种量是不是成反比例的量,然后让学生自己举例说说生活中的反比例,进一步加深对反比例关系的认识。

  【学情简介】

  这节课是在学生学习正比例的基础上进行教学的。教学时充分相信学生、尊重学生,改变传统的教学模式,学生由被动学习转化为主动学习,放手让他们主动去探索出新知识,最大限度地充分发挥学生的主观主动性。从而使学生学到探究新知的方法,体验到成功的喜悦,激起学生学习的兴趣。同时采用引探法,引导学生自主探究,培养他们利用已有知识解决新问题的能力。

  【教学目标】

  知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。

  能力目标:经历反比例意义的构建过程,培养发现的能力和归纳概括的能力。

  情感与态度目标:体会反比例与生活之间的联系,感悟到事物之间相互联系和相互转化的辨证唯物主义的观点。

  【教学重难点】

  重点:理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。

  难点:掌握反比例的特征,能够正确判断反比例关系。

  【教学方法】

  小组合作,归纳推理,探究交流

  【教学准备】

  多媒体课件

  【课时安排】

  1课时

  【教学过程】

  (一)复习猜想导入,引出问题。

  1、成正比例的量有什么特征?什么叫正比例关系?

  2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。

  达成目标:猜想导课,激发探究愿望

  (二)共同探索,总结方法。

  1、明确这节课的学习目标:(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。

  2、情境导入,学习探究。

  (1)我们先来看一个实验。

  高度(厘米) 30 20 15 10 5

  底面积(平方厘米) 10 15 20 30 60

  体积(立方厘米)

  提问:根据列表,你从中你发现了什么?

  (2)学生讨论交流。

  (3)引导学生回答:表中的两个量是高度和底面积。

  高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。

  每两个相对应的数的乘积都是300.

  (4)计算后你又发现了什么?

  每两个相对应的数的乘积都是300,乘积一定。

  教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。

  教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)

  (5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:y=k(一定)

  小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?

  (6)归纳总结反比例的意义。

  (7)比较归纳正反比例的异同点。

  达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。

  (三)运用方法,解决问题。

  1、生活中,哪些相关联的量成反比例关系,举例说一说。

  2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?

  3、出示反比例图像,与正比例图像进行比较学习。

  达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。

  (四)反馈巩固,分层练习。

  判断下面每题中的两个量是不是成反比例,并说明理由。

  (1)路程一定,速度和时间。

  (2)小明从家到学校,每分走的速度和所需时间。

  (3)平行四边形面积一定,底和高。

  (4)小林做10道数学题,已做的题和没有做的题。

  (5)小明拿一些钱买铅笔,单价和购买的数量。

  达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。

  (五)课堂总结,提升认识

  总结:今天我们学习了什么?(揭示课题—反比例)你有什么收获?学习中,你要提示大家注意什么?你对今天的学习还有什么疑问吗?

  【板书设计】 反比例

  高度(厘米) 30 20 15 10 5

  底面积(平方厘米) 10 15 20 30 60

  体积(立方厘米) 300 300 300 300 300

  高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。

  高×底面积=水的体积(一定)

  反比例关系式:y=k(一定)

反比例教案 篇4

  教学内容

  教科书第59页例2及练习十三4~6题。

  教学目标

  1.能运用反比例知识解决简单的实际问题,培养学生的数学应用意识和解决问题的能力。

  2.经历探索反比例应用的学习过程,体会反比例知识与生活的联系。

  3.使学生感受事物的普遍联系,受到辩证唯物主义观点的启蒙教育。

  教学重点

  根据反比例的`意义解决有关反比例的实际问题。

  教学难点

  理解反比例应用题的解题思路。

  教学准备

  教师先准备好复习题和增加的练习题。

  教学过程

  一、激趣引入,复习铺垫

  1.运一堆煤

  车的载重量(t)

  辆数(辆)

  根据表格中的内容,你能写出多少个等量关系式?

  2.判断

  (1)当速度一定,路程和时间成什么比例?为什么?

  (2)当时间一定,路程和速度成什么比例?为什么?

  (3)当路程一定,速度和时间成什么比例?为什么?

  教师:运用反比例和以前学过的知识,我们可以解决生活中的一些问题。

  板书课题:反比例的应用

  二、合作学习,探索方法

  1、教学例2

  引导学生理解题意,找出题中的两种量。

  反馈:速度和时间是两种相关联的量。

  教师:看到这两种量,你还联想到了哪种量?(路程)

  教师:上题中路程是一定的量吗?

  着重引导学生明白:"青年突击队"参加泥石流抢险,从出发到目的地的路程是一定的。

  教师:路程一定,速度和时间成什么关系?为什么?

  反馈:速度和时间是两种相关联的量,速度扩大或缩小几倍,时间反而缩小或扩大相同的倍数,它们的积(路程)一定,所以速度和时间成反比例。

  2、解答例2

  (1)接着出示例2后面的内容:"出发时接到紧急通知要求3时之内必须到达,他们每时至少需行多少千米?"

  让学生说出,现在增加的这个条件和问题应该对应在表的哪个位置?突出让学生找准对应关系。

  (2)合作学习:要求学生独立思考后,再试着用多种方法解答这个问题,然后在小组内交流。

  交流要求:把思路和解答方法说给自己小组的成员听,把同组同学认为正确的解答方法,请组长板书在黑板上。如果有其他组长已经写在黑板上了,另一组长就不再板书同样的解决方法。如果你用的解答方法,同组的同学不能准确判断对错,或者引起了争议的解答方法,可以自己上来把它板书在黑板上。

  学生活动,教师巡视指导。(把黑板分成3大块,供学生板书解答方法)

  (3)集体交流,结合黑板上的板书,师生共同理解解法:

  预设方法1:6×4÷3=8(km)

  抽生说出,算式6×4表示什么意思?

  预设方法2:解:设他们每时至少行x km。

  3x=6×4

  x=24÷3

  x=8

  教师:这样列式的根据是什么?

  反馈:根据速度和时间成反比例,它们的路程相等,列出等量关系。

  预设方法3:解:设他们每时至少行x km。

  6∶x=3∶4或x∶6=4∶3

  这种列式的方法有时会在学生中出现,应该由写这种解答方法的同学来说说他的想法。在这里主要还得根据课堂上学生出现的各种解法来引导他们理解解题思路。

  三、巩固应用,促进发展

  1.基本练习

  (1)将例2的最后一句话改编成2道应用题。

  如果要想2时到达,他们平均每时需行多少千米?

  如果每时行8 km,要几时才能到达目的地?

  (2)练习十三第4题,先独立完成,再集体订正。

  2.对比练习

  (1)完成练习十三5题和6题。

  教师引导提示:题中有哪两种相关联的量?哪种量是一定的?根据一定的量找出它们的等量关系,再解答。

  (2)补充练习:修一条路,原计划每天修400 m,25天完成。实际前4天修 m,照这样的速度,修完要用多少天?(沟通区别与联系)

  小组讨论后反馈:

  ①每天的米数--天数 ②总米数--天数

  反比例知识解答:÷4=400×25

  正比例知识解答:∶4=(400×25)∶x

  提问:为什么一道题既能用正比例解答又能用反比例解答呢?

  引导学生明白:因为题中既有速度(照这样的速度)一定,也有总米数(一条路长度)一定。

  :在解答时,一定要认真审题,具体问题具体分析。

  说一说生活中还有哪些问题可以用反比例来解答。

  四、今天这节课你有什么收获?说听听。

反比例教案 篇5

  教学目标

  1.结合丰富的实例,认识反比例。

  2.能根据反比例的意义,判断两个相关联的量是不是成反比例。

  3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。

  教学重点

  认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

  教学难点

  认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

  教学过程

  一、复习

  1.什么是正比例的量?

  2.判断下面各题中的两种量是否成正比例?为什么?

  (1)工作效率一定,工作时间和工作总量。

  (2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。

  (3)正方形的边长和它的面积。

  二、导入新课

  利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

  三、进行新课

  1.情境(一)

  认识加法表中和是12的直线及乘法表中积是12的曲线。

  引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

  2.情境(二)

  让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

  两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。

  同桌交流,用自己的语言表达。

  写出关系式:速度时间=路程(一定)

  观察思考并用自己的语言描述变化关系乘积(路程)一定。

  3.情境(三)

  把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。

  写出关系式:每杯果汁量杯数=果汗总量(一定)

  以上两个情境中有什么共同点?

  4.反比例意义

  引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

反比例教案 篇6

  教学内容:教科书94页“练习与实践”的第7~10题。

  教学目标:

  1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。

  2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。

  教学重点:

  使学生加深认识比例的意义和基本性质。

  教学难点:

  能判断两个比能能不能组成比例,能比较熟练地解比例。

  教学准备:多媒体

  教学过程:

  一、与反思

  今天我们一起来复习正比例和反比例相关知识。

  怎样判断两种量是否成正比例或反比例关系?

  学生交流

  二、练习与实践

  1.完成“练习与实践”第7题

  让学生先独立完成,再点评。

  2.完成“练习与实践”第8题

  引导学生列举几组对应的数值

  再分析每组中两个数的关系,再判断。

  3.完成“练习与实践”第9题

  第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)

  第2小题让学生在教材的方格图上描点、连线,

  引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。

  体会数形结合在解决问题方面的价值。

  4.完成“练习与实践”第10题

  什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)

  怎样求图上距离?怎样求实际距离

  学生量出的图上距离。

  利用的线段比例尺,求出相应的实际距离

  三、通过学习你有什么收获?

  学生交流

  四、作业

  完成《练习与测试》相关作业。

  板书设计

  关于正比例和反比例的复习

反比例教案 篇7

  教学内容:

  教材第106、107页例1,例2。

  教学要求:

  1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。

  2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。

  教学重点:

  认识正、反比例应用题的特点。

  教学难点:

  掌握用比例知识解答应用题的解题思路。

  教学过程:

  一、铺垫孕伏:

  1.判断下面的量各成什么比例。

  (1)工作效率一定,工作总量和工作时间。

  (2)路程一定,行驶的速度和时间。

  让学生先分别说出数量关系式,再判断。

  2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

  (1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

  (2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。

  指名学生口答,老师板书。

  3.引入新课。

  从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)

  二、自主探究:

  1.教学例1。

  (1)出示例1,让学生读题。

  提问:以前我们是怎样解答的?(板书算式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量?

  (2)说明:这道题还可以用比例知识解答。

  提问:题里再买几个同样的篮球说明什么一定?数量之间有怎样的关系式,两种相关联的量成什么比例关系?题里两次篮球个数与总价对应数值各是多少?这两次对应数值的什么相等?你能根据对应数值的比值相等,列出等式来解答吗?请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的?先求单一量的应用题现在用什么比例关系解答的?

  (3)小结:

  提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次篮球个数与总价对应数值比的比值相等,列等式解答。

  2.教学改编题。

  出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。

  3.教学例2。

  (1)出示例2,学生读题。

  提问:以前我们是怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:效率时间=总量)这道题里哪个数量是不变的量?

  (2)谁能仿照例l的解题过程,用比例知识来解答例2?请同学们自己来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。效率和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

  (3)提问:按过去的方法是先求什么再解答的?先求总量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次修地下管道相对应数值的乘积相等,列等式解答。

  4.小结解题思路。

  请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)

  三、巩固练习

  1.做练一练。

  指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。

  2.做练习十三第1题。

  先自己判断,小组交流,再集体订正。

  四、课堂小结

  这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?

  五、布置作业

  完成练习十三第2~6题的解答。

反比例教案 篇8

  教学内容:教材第99~102页例1~例3。

  教学要求:

  1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

  2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  教学重点:认识反比例关系的意义。

  教学难点:掌握成反比例量的变化规律及其特征。

  教学过程:

  一、铺垫孕伏:

  1.正比例关

  系的意义是什么?怎样用字母表示这种关系?

  判断两种相关联量成不成正比例的关键是什么?

  2.下面哪两种量成正比例关系?为什么?

  (1)时间一定,行驶的速度和路程。

  (2)数量一定,单价和总价。

  3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

  4.引入新课。

  如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

  二、自主探究:

  1.教学例2。

  出示例2某运输公司要运一批300吨的货物。让学生计算并完成填表任务。

  每天运的数量(吨)

  所需的天数

  在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

  指名学生口答讨论的结果,得出:

  (1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

  (2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

  (3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

  2.教学例1

  出示例1。

  请同学们按照刚才学习例4的方法,自己学习例1,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积比变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?

  3.概括反比例的意义。

  (1)综合例1、例2的共同点。

  提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?

  (2)概括反比例意义。

  例1、例2里两种相关联的量,它们是什么关系的量呢?请同学们看第101页1~3自然段。说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。

  4.具体认识。

  (1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

  例2里的两种量成反比例关系吗?为什么?

  (2)提问:看两种相关联的量成不成反比例,关键要看什么?

  (3)判断。

  现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

  5.教学例3。

  出示例3,看书自学,小组讨论,集体交流。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?

  三、巩固练习

  用刚才我们说的判断方法来做几道题。

  1.做练一练。

  指名学生口答,说明理由。(可以写出数量关系式看一看)

  2.下题两种相关联量成不成反比例?为什么?

  一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

  3.做练习十二第1题。

  四、课堂小结

  这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

  五、课堂作业

  练习十二第2~4题。